Purpose: The need for prolonged anticoagulation and the occurrence of hypophosphatemia are well known drawbacks of continuous renal replacement therapies (CRRT). The aim was to evaluate the effects on acid-base status and serum phosphate of a regional citrate anticoagulation (RCA) protocol for continuous veno-venous hemofiltration (CVVH) combining the use of citrate with a phosphate-containing replacement fluid.

Methods: In a small cohort of heart surgery patients undergoing CRRT for acute kidney injury, we adopted an RCA-CVVH protocol based on a commercially available citrate solution (18 mmol/l) combined with a recently introduced phosphate-containing replacement fluid (HCO3 -30 mmol/l, phosphate 1.2), aimed at preventing phosphate depletion.

Results: In 10 high bleeding-risk patients, the RCA-CVVH protocol provided an adequate circuit lifetime (46.8 ± 30.3 h) despite the adoption of a low citrate dose and a higher than usual target circuit Ca2+ (≤0.5 mmol/l). Acid-base status was adequately maintained without the need for additional interventions on RCA-CVVH parameters and without indirect sign of citrate accumulation [(pH 7.43 (7.41-7.47), bicarbonate 24.4 mmol/l (23.2-25.6), BE 0 (-1.5 to 1.1), calcium ratio 1.97 (1.82-2.01); median (IQR)]. Serum phosphate was steadily maintained in a narrow range throughout RCA-CVVH days [1.1 mmol/l (0.9-1.4)]. A low amount of phosphorus supplementation (0.9 ± 2 g/day) was required in only 30% of patients.

Conclusions: Although needing further evaluation, the proposed RCA-CVVH protocol ensured a safe and effective RCA without electrolyte and/or acid-base derangements. CRRT-induced hypophosphatemia was prevented in most of the patients by the adoption of a phosphate-containing replacement solution, minimizing phosphate supplementation needs.

Download full-text PDF

Source
http://dx.doi.org/10.5301/ijao.5000283DOI Listing

Publication Analysis

Top Keywords

phosphate-containing replacement
16
rca-cvvh protocol
12
continuous veno-venous
8
veno-venous hemofiltration
8
replacement fluid
8
regional citrate
8
citrate anticoagulation
8
acid-base status
8
serum phosphate
8
citrate
6

Similar Publications

The Capture of Cadmium from Solution during the Replacement of Calcite by Apatite.

ACS Earth Space Chem

July 2024

Institut für Mineralogie, Universität Münster, Corrensstrasse 24, Münster 48149, Germany.

Article Synopsis
  • Researchers studied how cadmium (Cd) can be captured from phosphate solutions by replacing calcium carbonate (CaCO) with phosphate phases like hydroxylapatite (HAP) and tricalcium phosphate (TCP) under varying temperature and pressure conditions.
  • Different advanced techniques, including atomic force microscopy and Raman spectroscopy, were used to observe the incorporation of Cd into new solid phosphate phases formed on materials like Carrara Marble and calcite crystals.
  • The findings suggest that while kinetic limitations may restrict Cd capture within the marble's structure, the surface allows for efficient incorporation, offering a potential method for removing both Cd and phosphate from contaminated environments.
View Article and Find Full Text PDF

Introduction: Hypophosphatemia is common during continuous renal replacement therapy (CRRT), but serum phosphate levels can potentially be maintained during treatment by either intravenous phosphate supplementation or addition of phosphate to renal replacement therapy (RRT) solutions.

Methods: We developed a steady-state phosphate mass balance model to assess the effects of CRRT dose on serum phosphate concentration when using both phosphate-free and phosphate-containing RRT solutions, with emphasis on low CRRT doses.

Results: The model predicted that measurements of serum phosphate concentration prior to (initial) and during CRRT (final) together with clinical data on CRRT dose, treatment duration, and phosphate supplementation can determine model patient parameters, that is, both the initial generation rate and clearance of phosphate prior to CRRT.

View Article and Find Full Text PDF

Background: Regional citrate anticoagulation (RCA) is the preferred modality of anticoagulation used in continuous kidney replacement therapy (CKRT) in adults and less extensively in children. Potential metabolic complications limit widespread use in infants, neonates, and in children with liver failure.

Methods: We report our experience with a simplified protocol in 50 critically ill children, infants, and neonates, some of them with liver failure, with commercially available solutions containing phosphorous and higher concentration of potassium and magnesium.

View Article and Find Full Text PDF

Background: Hypophosphatemia is a common electrolyte disorder in critically ill patients undergoing prolonged kidney replacement therapy (KRT). We evaluated the efficacy and safety of a simplified regional citrate anticoagulation (RCA) protocol for continuous venovenous hemofiltration (CVVH), continuous venovenous hemodiafiltration (CVVHDF) and sustained low-efficiency dialysis filtration (SLED-f). We aimed at preventing KRT-related hypophosphatemia while optimizing acid-base equilibrium.

View Article and Find Full Text PDF

Background And Objectives: Hypophosphatemia is commonly observed in patients receiving continuous KRT. Patients who develop hypophosphatemia may be at risk of respiratory and neuromuscular dysfunction and therefore subject to prolongation of ventilator support. We evaluated the association of phosphate-containing versus phosphate-free continuous KRT solutions with ventilator dependence in critically ill patients receiving continuous KRT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!