Using the phospholane-phosphite ligand, BOBPHOS, almost perfect regioselectivities and high enantioselectivities (up to 92% ee) are observed in Rh catalysed enantioselective hydroformylation of vinyl arenes. This can be achieved under solvent-free conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc48823cDOI Listing

Publication Analysis

Top Keywords

enantioselective hydroformylation
8
hydroformylation vinyl
8
vinyl arenes
8
rhodium/phospholane-phosphite catalysts
4
catalysts unusually
4
unusually high
4
high regioselectivity
4
regioselectivity enantioselective
4
arenes phospholane-phosphite
4
phospholane-phosphite ligand
4

Similar Publications

This publication describes monodentate phosphine and oxazoline ligands attached to an amino acid ester and the application of their supramolecularly assembled rhodium(I) or iridium(I) complexes in asymmetric catalysis. The major feature of these complexes is the transmission of chirality from distant hydrogen bonded amino acids to the prochiral catalytic metal center ("backdoor induction"). The generated homoleptic and heteroleptic rhodium(I) or iridium(I) precatalysts were studied by NMR, UV-VIS and CD spectroscopy as well as X-ray single crystal diffraction.

View Article and Find Full Text PDF

Rhodium-Catalyzed Asymmetric Reductive Hydroformylation of α-Substituted Enamides.

J Am Chem Soc

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.

Chiral γ-amino alcohols are prevalent structural motifs in natural products and bioactive compounds. Nevertheless, efficient and atom-economical synthetic methods toward enantiomerically enriched γ-amino alcohols are still lacking. In this study, a highly enantioselective rhodium-catalyzed reductive hydroformylation of readily available α-substituted enamides is developed, providing a series of pharmaceutically valuable chiral 1,3-amino alcohols in good yields and excellent enantioselectivities in a single step.

View Article and Find Full Text PDF

Stereoselective Synthesis of -2,4-Disubstituted Tetrahydrofurans via a Pd-Catalyzed Hayashi-Heck Arylation and Rh-Catalyzed Hydroformylation Sequence.

J Org Chem

August 2024

Department of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States.

A catalytic, two-step protocol for the expedient synthesis of -2,4-disubstituted tetrahydrofurans is described. In the first step, an enantioselective and regioselective Pd-catalyzed Hayashi-Heck arylation was developed using ()-hexaMeOBiphep to generate 5-aryl-2,3-dihydrofurans. A subsequent Rh-catalyzed hydroformylation step proceeds at low Rh loading with high regio- and diastereoselectivity for the -2,4-disubstituted tetrahydrofuran isomer.

View Article and Find Full Text PDF

Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes.

Nat Commun

July 2024

Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.

Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates.

View Article and Find Full Text PDF

A highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!