Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes suggest a conserved link between condensin occupancy and high transcription rates. To gain insight into the mechanisms of condensin binding and mitotic chromosome condensation, we searched for factors that collaborate with condensin through a synthetic lethal genetic screen in the fission yeast Schizosaccharomyces pombe. We isolated novel mutations affecting condensin, as well as mutations in four genes not previously implicated in mitotic chromosome condensation in fission yeast. These mutations cause chromosome segregation defects similar to those provoked by defects in condensation. We also identified a suppressor of the cut3-477 condensin mutation, which largely rescued chromosome segregation during anaphase. Remarkably, of the five genes identified in this study, four encode transcription co-factors. Our results therefore provide strong additional evidence for a functional connection between chromosome condensation and transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931570PMC
http://dx.doi.org/10.1534/g3.113.009621DOI Listing

Publication Analysis

Top Keywords

chromosome condensation
16
fission yeast
12
mitotic chromosome
12
condensin
9
genetic screen
8
chromosome segregation
8
chromosome
6
condensation
5
screen functional
4
functional partners
4

Similar Publications

Mechanistic insights into pachymic acid's action on triple-negative breast Cancer through TOP2A targeting.

Sci Rep

January 2025

Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation.

View Article and Find Full Text PDF

Simplified acid extraction and quantification of histones in human tumor cells.

Methods Cell Biol

January 2025

Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Cancer Division, Faculty of medicine, Imperial college London, United Kingdom.

Histones are essential nuclear proteins that package eukaryotic DNA into chromosomes, play a vital role in gene regulation, DNA replication, DNA repair and chromosome condensation. Understanding histone modifications is crucial for grasping biological and disease-related processes. Specific alterations in histone modifications serve as sensitive and selective biomarkers for conditions like cancer, impacting both tumor and immune cells and affecting their interactions.

View Article and Find Full Text PDF

A biophysical basis for the spreading behavior and limited diffusion of Xist.

Cell

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:

Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.

View Article and Find Full Text PDF

Recent advances in the synthesis and application of biomolecular condensates.

J Biol Chem

January 2025

CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs.

View Article and Find Full Text PDF

Phase transitions in chromatin: Mesoscopic and mean-field approaches.

J Chem Phys

January 2025

CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.

By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!