Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2.

Nat Nanotechnol

1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA.

Published: February 2014

Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect-to-direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of ∼ 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2013.277DOI Listing

Publication Analysis

Top Keywords

direct bandgap
12
direct observation
8
observation transition
8
transition indirect
8
indirect direct
8
atomically thin
8
monolayer mose2
8
direct
5
transition
4
bandgap
4

Similar Publications

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

Mixed Pt-Ni Halide Perovskites for Photovoltaic Application.

Materials (Basel)

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

CsPtI is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtNi)(I,Cl) thin films on the properties and stability of the perovskite material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!