A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood-brain barrier cell and Caco-2 cell models. | LitMetric

Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood-brain barrier cell and Caco-2 cell models.

Toxicol In Vitro

Department of Pharmacology, Beijing Laboratory of Biomedical Detection and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:

Published: April 2014

This in vitro study aims to evaluate and compare transmembrane transport of eight cardio-cerebrovascular protection flavonoids including puerarin, rutin, hesperidin, quercetin, genistein, kaempferol, apigenin and isoliquiritigenin via the rat blood-brain barrier cell and Caco-2 cell monolayer models, based on the data of cytotoxicity and lipophilicity. The cytotoxicity of the flavonoids to rat brain microvessel endothelial cell was determined by the MTT assay. The apparent permeability coefficients (Papp) of the flavonoids were calculated from the unilateral transport assays in Transwell system with simultaneous determination using a high performance liquid chromatography. The results showed that the cytotoxicity and oil-water partition coefficient of the flavonoids modified by the number and position of the glycoside and hydroxyl group were the key determinant for the transmembrane transport. The Papp values of the flavonoids reduced adversely when the numbers of glycoside and hydroxyl groups of the flavonoids increased accordingly. The tested flavonoids exhibited time-dependent Papp values in these models. The efflux mechanism related with P-glycoprotein also existed with the polar flavonoids; verapamil could enhance the permeation of rutin and quercetin via inhibition of P-glycoprotein. We propose that genistein and isoliquiritigenin with the permeation priority in vitro Caco-2 and BBB cell model could be better as the drug candidates for cardio-cerebral vascular protection. These findings provided important information for establishing the transport relationship for the flavonoid compounds and evaluating the potential oral bioavailability and brain distribution of the flavonoids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2013.12.002DOI Listing

Publication Analysis

Top Keywords

flavonoids
10
cytotoxicity lipophilicity
8
blood-brain barrier
8
barrier cell
8
cell caco-2
8
caco-2 cell
8
transmembrane transport
8
glycoside hydroxyl
8
papp values
8
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!