It is widely recognized that human cells are equipped with innate antiviral-RNA armour involving the production of type I interferons and APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G) gene-product. Although arsenic has been shown to have paradoxical effect on one arm of this armour involving APOBEC3G, the exact molecular mechanism of its action in this regard is far from clear. The present study, addressed to explore as to how arsenic programmes this innate antiviral-RNA cellular-sensing pathway, clearly revealed that arsenic programmes this innate cellular antiviral genomic response through its inherent capacity to initiate cellular miR-2909 RNomics pathway, involving not only the modulation of APOBEC3G gene but also KLF4 (Kruppel-like factor 4) dependent regulation of gene coding for IKBKε (Inhibitor of nuclear factor kappa-B kinase subunit epsilon) which in turn modulates RIG-I (retinoic acid-inducible gene 1) pathway responsible for the production of IFNβ (interferon beta) through restriction of CYLD (Cylindromatosis) deubiqutinating activity. This restricted inhibitory enzyme activity of CYLD upon NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) also ensures sustained expression of miR-2909. Our results for the first time show that cellular miR-2909 RNomics may constitute an innate genomic armour to promote as well as restrict retroviral infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2013.12.004 | DOI Listing |
Environ Toxicol Chem
January 2025
Savannah River Ecology Lab, University of Georgia, Aiken, SC, USA.
Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250117, China.
Roxarsone (V) (Rox(V)) is an organoarsenical compound that poses significant risks to aquatic ecosystems and various diseases. Reducing trivalent 3-amino-4-hydroxyphenylarsonic acid (HAPA(III)) offers a competitive advantage; however, it leads to localized arsenic contamination, which can disrupt the soil microbiome and impede plant growth. Three genes, BsntrA, arsC2, and BsexpA, encoding nitroreductase, arsenate reductase, and MFS transporter, respectively, were identified in the Rox(V)-resistant strain Brevundimonas sp.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFJ Nephrol
January 2025
Laboratory of Renal Toxicopathology & Medicine, P.G. Department of Environmental Sciences, Sambalpur University, Burla, Odisha, 768019, India.
Background: The present community-based study assessed the prevalence of chronic kidney disease (CKD)/chronic kidney disease of unknown origin (CKDu) as well as anemia in some intense agricultural zones under Hirakud Command Area and evaluated their association with pesticides and heavy metal exposure.
Methods: Random cluster sampling method was used to assess the prevalence of CKD and anemia. Hematological analysis was carried out using autoanalyzer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!