DW09849, a selective phosphatidylinositol 3-kinase (PI3K) inhibitor, prevents PI3K signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110α (H1047R).

J Pharmacol Exp Ther

Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research (J.-l.L., X.Z., C.-l.G., X.W., L-j.T., J.D., L-h.M.) and Department of Medicinal Chemistry (W-h.D.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China; and School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China (G.-r.G., S.-f.C. W.-h.D.).

Published: March 2014

Phosphatidylinositol 3-kinase, α isoform (PI3Kα) plays essential roles in cell metabolism, growth, and proliferation and has been validated as a promising anticancer target. In an effort to search for new PI3Kα-selective inhibitors, DW series compounds were designed and synthesized aiming to reduce the off-target effects of their parent compound PIK-75 [2-methyl-5-nitro-1-benzenesulfonic acid 2-[(6-bromoimidazo[1,2-a]pyridin-3-yl)methylene]-1-methylhydrazide], which was reported to selectively target PI3Kα. A series of compounds named DW series potently inhibited the kinase activity of PI3Kα with little activity against PI3K-related protein kinases and a panel of 15 tyrosine kinases. Similar to PIK-75, DW series compounds were more potent to inhibit PI3Kα among four class I PI3K isoforms, whereas a representative compound DW09849 [(E)-N'-((6-bromoimidazo[1,2-a]pyridin-3-yl)methylene)-N-ethyl-2-methyl-5-nitrobenzohydrazide] displayed distinct binding mode compared with PIK-75. Although DW series compounds inhibited proliferation of rhabdomyosarcoma RH30 cells at elevated 50% inhibitory concentrations (IC50) in comparison with PIK-75, they were more selective than PIK-75 to inhibit PI3K signaling in the cellular context. In particular, DW09849 significantly and persistently blocked PI3K/protein kinase B signaling in RH30 cells, which consequently arrested RH30 cells in the G1 phase. Moreover, DW09849 selectively suppressed the proliferation and clonogenesis of transformed RK3E/HR cells harboring oncogenic mutation of p110α H1047R, as well as a panel of human breast cancer cells containing mutated PI3Kα, which is consistent with the finding that DW09849 demonstrated preference against H1047R mutated PI3Kα in molecular docking stimulation. These results suggest that DW series compounds, especially DW09849, selectively targeting PI3Kα with less off-target effects than PIK-75, provide new clues for the design and discovery of new specific PI3Kα inhibitors for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.113.210724DOI Listing

Publication Analysis

Top Keywords

series compounds
20
rh30 cells
12
phosphatidylinositol 3-kinase
8
pi3k signaling
8
oncogenic mutation
8
mutation p110α
8
p110α h1047r
8
pi3kα
8
off-target effects
8
pik-75 series
8

Similar Publications

Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed, synthesized and explored their anti-inflammatory activities and mechanism in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had lower degree of cytotoxicity than that of naproxen.

View Article and Find Full Text PDF

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Diaryl thieno-[3,4-]thiophenes (TT) are photoswitchable compounds that operate through reversible photoinduced cyclization/cycloreversion and have been designed specifically for integration within π-conjugated polymers to switchably manipulate polymer electronic properties. Here we report on how cross conjugating the central TT moiety impacts photocyclization dynamics as interrogated using transient absorption spectroscopy (TAS) for a series of switches built with electron-rich substituents that have various electronic interaction strengths with the TT core. For cross-conjugated structures exhibiting a propensity to switch in steady-state photoconversion experiments, ultrafast TAS reveals signatures of rapid dynamics (occurring within <1-10 ps) similar to those observed for unsubstituted switches and that are consistent with photocyclization.

View Article and Find Full Text PDF

Design and synthesis of novel triazine derivatives as antimalarial agents.

Bioorg Med Chem Lett

December 2024

Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

In a previous study, we reported that nilotinib, a BCR-ABL tyrosine kinase inhibitor, possesses moderate antimalarial activity against PfK1 and PfFCR3. As a part of our efforts to develop novel antimalarial agents, a series of novel triazine analogs was identified as potent antimalarial agents via structure modification of nilotinib. Compound 15a showed strong antimalarial activities against PfK1 and PfFCR3 with IC values of 0.

View Article and Find Full Text PDF

Structure-Based Design of "Head-to-Tail" Macrocyclic PROTACs.

JACS Au

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China.

Macrocyclization is a compelling strategy for conventional drug design for improving biological activity, target specificity, and metabolic stability, but it was rarely applied to the design of PROTACs possibly due to the mechanism and structural complexity. Herein, we report the rational design of the first series of "Head-to-Tail" macrocyclic PROTACs. The resulting molecule exhibited pronounced Brd4 protein degradation with low nM DC values while almost totally dismissing the "hook effect", which is a general character and common concern of a PROTAC, in multiple cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!