Schistosomiasis is one of the most common parasitic diseases in tropical and subtropical areas, including Brazil. A national control programme was initiated in Brazil in the mid-1970s and proved successful in terms of morbidity control, as the number of cases with hepato-splenic involvement was reduced significantly. To consolidate control and move towards elimination, there is a need for reliable maps on the spatial distribution of schistosomiasis, so that interventions can target communities at highest risk. The purpose of this study was to map the distribution of Schistosoma mansoni in Brazil. We utilized readily available prevalence data from the national schistosomiasis control programme for the years 2005-2009, derived remotely sensed climatic and environmental data and obtained socioeconomic data from various sources. Data were collated into a geographical information system and Bayesian geostatistical models were developed. Model-based maps identified important risk factors related to the transmission of S. mansoni and confirmed that environmental variables are closely associated with indices of poverty. Our smoothed predictive risk map, including uncertainty, highlights priority areas for intervention, namely the northern parts of North and Southeast regions and the eastern part of Northeast region. Our predictive risk map provides a useful tool for to strengthen existing surveillance-response mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2013.12.007 | DOI Listing |
Abdom Radiol (NY)
January 2025
Department of Radiology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.
Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.
Purpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Advanced Medical Devices Laboratory, Kyushu University, Nishi-ku, Fukuoka, 819-0382, Japan.
Purpose: This paper presents a deep learning approach to recognize and predict surgical activity in robot-assisted minimally invasive surgery (RAMIS). Our primary objective is to deploy the developed model for implementing a real-time surgical risk monitoring system within the realm of RAMIS.
Methods: We propose a modified Transformer model with the architecture comprising no positional encoding, 5 fully connected layers, 1 encoder, and 3 decoders.
J Sex Med
January 2025
Clinical Obstetric and Gynecological V Buzzi, ASST-FBF-Sacco, Via Castelvetro 24-20124-University of the Study of Milan, Milan, Italy.
Background: Vulvodynia is a multifactorial disease affecting 7%-16% of reproductive-aged women in general population; however, little is still known about the genetics underlying this complex disease.
Aim: To compare polygenic risk scores for hormones and receptors levels in a case-control study to investigate their role in vulvodynia and their correlation with clinical phenotypes.
Methods: Our case-control study included patients with vestibulodynia (VBD) and healthy women.
BMC Oral Health
January 2025
Sub-Institute of Public Safety Standardization, China National Institute of Standardization, No.4 Zhichun Road, Haidian District, Beijing, 100191, PR China.
Background: This study aimed to establish a model for predicting the difficulty of mandibular third molar extraction based on a Bayesian network to meet following requirements: (1) analyse the interaction of the primary risk factors; (2) output quantitative difficulty-evaluation results based on the patient's personal situation; and (3) identify key surgical points and propose surgical protocols to decrease complications.
Methods: Relevant articles were searched to identify risk factors. Clinical knowledge and experience were used to analyse the risk factors to establish the Bayesian network.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!