Bacterial and Archaeal direct counts: a faster method of enumeration, for enrichment cultures and aqueous environmental samples.

J Microbiol Methods

School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

Published: March 2014

A new presence/absence method has been developed to count fluorochrome-stained bacterial and archaeal cells on membrane filters using epifluorescence microscopy. This approach was derived from the random distribution of cells on membranes that allowed the use of the Poisson distribution to estimate total cell densities. Comparison with the standard Acridine Orange Direct Count (AODC) technique shows no significant difference in the estimation of total cell populations, or any reduction in the precision of these estimations. The new method offers advantages over the standard AODC in considerably faster counting, as there is no need to discriminate between every potential cell visible on a field and fluorescent detritus, it is only necessary to confirm the presence of one cell. Additionally, the new method requires less skill, so has less reliance on expert counters, and that should reduce inter-counter variability. Although this work used the fluorochrome Acridine Orange, clearly the results are applicable to any fluorochrome used to count bacterial and archaeal cells. This method was developed using enrichment cultures for use with enrichment cultures and aqueous environmental samples where interfering detrital and mineral particles are minimal e.g., freshwater/seawater, therefore, it is not suitable for estimating total cells from sediment samples. This method has the potential for use in any situation where counts of randomly distributed items are made using a grid or quadrat system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2013.12.006DOI Listing

Publication Analysis

Top Keywords

bacterial archaeal
12
enrichment cultures
12
cultures aqueous
8
aqueous environmental
8
environmental samples
8
method developed
8
archaeal cells
8
total cell
8
acridine orange
8
method
6

Similar Publications

In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.

View Article and Find Full Text PDF

Aim: The aim of this study is to increase the diversity of culturable halophilic archaea by comparing various isolation conditions and to explore the application of halophilic archaea for enzyme-producing activities and antimicrobial properties.

Methods And Results: We systematically compared the isolation performance of various archaeal and bacterial media by isolating halophilic archaea from the Da Qaidam Salt Lake, a magnesium sulfate subtype hypersaline lake on the Qinghai-Tibet Plateau, China, using multiple enrichment culture and gradient dilution conditions. A total of 490 strains of halophilic archaea were isolated, which belonged to five families and 11 genera within the order Halobacteriales of the class Halobacteria of the phylum Euryarchaeota.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!