Electrical neural stimulation is the technique used to modulate neural activity by inducing an instantaneous charge imbalance. This is typically achieved by injecting a constant current and controlling the stimulation time. However, constant voltage stimulation is found to be more energy-efficient although it is challenging to control the amount of charge delivered. This paper presents a novel, fully integrated circuit for facilitating charge-metering in constant voltage stimulation. It utilises two complementary stimulation paths. Each path includes a small capacitor, a comparator and a counter. They form a mixed-signal integrator that integrates the stimulation current onto the capacitor while monitoring its voltage against a threshold using the comparator. The pulses from the comparator are used to increment the counter and reset the capacitor. Therefore, by knowing the value of the capacitor, threshold voltage and output of the counter, the quantity of charge delivered can be calculated. The system has been fabricated in 0.18 μm CMOS technology, occupying a total active area of 339 μm × 110 μm. Experimental results were taken using: (1) a resistor-capacitor EEI model and (2) platinum electrodes with ringer solution. The viability of this method in recruiting action potentials has been demonstrated using a cuff electrode with Xenopus sciatic nerve. For a 10 nC target charge delivery, the results of (2) show a charge delivery error of 3.4% and a typical residual charge of 77.19pC without passive charge recycling. The total power consumption is 45 μW. The performance is comparable with other publications. Therefore, the proposed stimulation method can be used as a new approach for neural stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2013.11.028 | DOI Listing |
Adv Sci (Weinh)
January 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).
View Article and Find Full Text PDFJAMA Netw Open
January 2025
National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Physiology and Department of Electrical and Computer System Engineering, Monash University - Clayton Campus, Wellington Rd, Melbourne, Victoria, 3800, AUSTRALIA.
Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the local field potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!