Meniscal injury is a common cause of canine lameness. Tissue engineered bioscaffolds may be a treatment option for dogs suffering from meniscal damage. The aim of this study was to compare in vitro meniscal-like matrix formation and biomechanical properties of porcine intestinal submucosa sheets (SIS), used in canine meniscal regenerative medicine, to synoviocyte-seeded SIS bioscaffold (SSB), cultured with fetal bovine serum (SSBfbs) or chondrogenic growth factors (SSBgf). Synoviocytes from nine dogs were seeded on SIS and cultured for 30days with 17.7% fetal bovine serum or recombinant chondrogenic growth factors (IGF-1, TGFβ1 and bFGF). The effect on fibrochondrogenesis was determined by comparing mRNA expression of collagen types Iα and IIα, aggrecan, and Sry-type homeobox protein-9 (SOX9) as well as protein expression of collagens I and II, glycosaminoglycan (GAG), and hydroxyproline. The effect of synoviocyte seeding and culture conditions on biochemical properties was determined by measuring peak load, tensile stiffness, resilience, and toughness of bioscaffolds. Pre-culture SIS contained 13.6% collagen and 2.9% double-stranded DNA. Chondrogenic growth factor treatment significantly increased SOX9, collagens I and IIα, aggrecan gene expression (P<0.05), and histological deposition of fibrocartilage extracellular matrix (GAG and collagen II). Culture with synoviocytes increased SIS tensile peak load at failure, resilience, and toughness of bioscaffolds (P<0.05). In conclusion, culturing SIS with synoviocytes prior to implantation might provide biomechanical benefits, and chondrogenic growth factor treatment of cultured synoviocytes improves in vitro axial meniscal matrix formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2013.10.038DOI Listing

Publication Analysis

Top Keywords

chondrogenic growth
12
porcine intestinal
8
intestinal submucosa
8
meniscal injury
8
fetal bovine
8
bovine serum
8
growth factors
8
iiα aggrecan
8
meniscal
5
culture canine
4

Similar Publications

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!