In our previous studies, we have demonstrated effective regeneration of cartilage through the creation and application of layered cell sheets that combine both chondrocytes and synovial cells. In this study, we were able to demonstrate that cells derived from cell sheets can survive for long periods after transplantation into rat knee joints having osteochondral defects. We established a method for generating cell sheets from firefly luciferase-expressing chondrocytes obtained from transgenic Lewis rats, and carried out allogenic transplantation of these cell sheets into wild-type Lewis rats. We then administered luciferin and monitored the survival of the transplanted cells by using bioluminescence imaging (BLI). Our data showed that the transplanted cells survived and could be detected for more than 21 months, which was longer than expected. Furthermore, the BLI data showed that the transplanted cells remained in the knee joint and did not migrate to other parts of the body, thus confirming the safety of the cell sheets. In this study, we monitored the duration of survival of cell sheets composed of only chondrocytes, only synovial cells, or both chondrocytes and synovial cells, and found that all three types of cell sheets survived for an extended period of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.11.071 | DOI Listing |
Stem Cell Reports
January 2025
Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFRegen Ther
June 2024
Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan.
Since abdominal adhesion are quite problematic in abdominal and pelvic surgery, the conventional HA/CMC film are commonly used as an anti-adhesive material. However, such types are difficult to be rolled and delivered through the port of laparoscopic surgical devices due to adherence to the laparoscopic port or other parts of the films. To create an anti-adhesion film with more favorable handling properties and anti-adhesive effect, we developed a novel punctate uneven gelatin film (PU GF).
View Article and Find Full Text PDFNeural Regen Res
January 2025
School of Medicine, Keele University, Newcastle-under-Lyme, UK.
Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!