A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. | LitMetric

Objectives: A novel bioprosthetic tricuspid valve was constructed from an acellular extracellular matrix (ECM) bioscaffold. The valve's mechanical functionality and potential for histologic regeneration was evaluated in an ovine model.

Methods: The native tricuspid valves of 4 domestic sheep were excised and replaced with bioprosthetic valves constructed from the ECM bioscaffold material shaped into the form of a tube. In vivo function was assessed over time by transthoracic echocardiography. Animals were euthanized at 3, 5, 8, and 12 months after valve implantation, and explanted valves were examined for gross morphology and by qualitative histopathologic analysis.

Results: All 4 sheep survived until the specified date. Forward flow by echocardiography was normal with trivial to mild regurgitation. Annular morphology and mobility of the leaflets appeared normal with excellent leaflet coaptation. Explanted valves were grossly normal at all time points and showed evidence of progressive tissue remodeling and integration at the host-tissue interface. Histopathologic analysis demonstrated massive host-cell infiltration, structural reorganization of the ECM bioscaffold, elastin generation at the annulus by 3 months, and increased collagen organization and glycosaminoglycan presence in the leaflets by 5 months, with no evidence of foreign body response.

Conclusions: When implanted in the form of a tubular valve, the acellular ECM bioscaffold demonstrates feasibility as a biomechanically sound bioprosthetic tricuspid valve replacement with evidence of progressive endothelialization and constructive tissue remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2013.10.048DOI Listing

Publication Analysis

Top Keywords

ecm bioscaffold
16
bioprosthetic tricuspid
12
tricuspid valve
12
novel bioprosthetic
8
explanted valves
8
evidence progressive
8
tissue remodeling
8
valve
5
in vivo remodeling
4
remodeling potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!