Despite bimetallic Fe/Ni nanoparticles have been extensively used to remediate groundwater, they have not been used for the catalytic degradation of amoxicillin (AMX). In this study, bentonite-supported bimetallic Fe/Ni (B-Fe/Ni) nanoparticles were used to degrade AMX in aqueous solution. More than 94% of AMX was removed using B-Fe/Ni, while only 84% was removed by Fe/Ni at an initial concentration of 60 mg L(-1) within 60 min due to bentonite serving as the support mechanism, leading to a decrease in aggregation of Fe/Ni nanoparticles, which was confirmed by scanning electron microscopy (SEM). The formation of iron oxides in the B-Fe/Ni after reaction with AMX was confirmed by X-ray diffraction (XRD). The main factors controlling the degradation of AMX such as the initial pH of the solution, dosage of B-Fe/Ni, initial AMX concentration, and the reaction temperature were discussed. The possible degradation mechanism was proposed, which was based on the analysis of degraded products by liquid chromatography-mass spectrometry (LC-MS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.11.033DOI Listing

Publication Analysis

Top Keywords

bimetallic fe/ni
12
fe/ni nanoparticles
12
catalytic degradation
8
degradation amoxicillin
8
aqueous solution
8
amx
6
fe/ni
5
enhancement catalytic
4
degradation
4
amoxicillin aqueous
4

Similar Publications

Cr(VI) can cause great harm to human beings and the environment and often exists in the form of HCrO̅ in aqueous environments. The adsorption characteristics of HCrO̅ on nitrogen-doped and iron-nickel-modified carbon substrates were systematically investigated using first principles. The properties of electron transfer and orbital hybridization of the substrates and HCrO̅ during the adsorption process were analyzed by electron deformation density and density of states.

View Article and Find Full Text PDF

Selective aptasensor of deoxynivalenol based on dual signal enhancement of thionine electrochemistry using silver nanoparticle-loaded label at gold nanoparticle-loaded electrodes.

Bioelectrochemistry

December 2024

School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China. Electronic address:

In this work, an efficient sensing platform deoxynivalenol (DON) detection was constructed through monitoring the current change of a competitive mechanism triggered by DON, leading the signal label detached from the electrode surface by square-wave voltammetry using thionine (Thi) as a redox indicator. The complementary strand of aptamer (cDNA) and Thi were loaded onto Fe/Ni bimetallic metal-organic framework loaded with sliver nanoparticles (AgNPs@FeNi-MOF) to construct AgNPs@FeNi-MOF/cDNA/Thi signal probes. In the presence of DON, the aptamer sequence was more predisposed to form an aptamer-DON complex, resulting in the displacement of the cDNA.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have designed a new catalyst using a combination of a crystalline Fe/Ni bimetallic metal-organic framework (MOF) and an amorphous Fe-MOF to enhance oxygen evolution reactions during electrolysis.
  • This catalyst features a unique lattice-heterostructure interface that boosts electron transfer, leading to impressive catalytic activity with a low overpotential of 257 mV at a current density of 10 mA cm.
  • Additionally, the catalyst shows excellent electrochemical stability, highlighting the potential of lattice-heterostructure interfaces for creating high-performance catalysts.
View Article and Find Full Text PDF

Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT).

View Article and Find Full Text PDF

Electrochemical reconstruction of metal-organic gels into crystalline oxy-hydroxide heterostructures for efficient oxygen evolution electrocatalysis.

Chem Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology China

Metal-organic gels (MOGs) are emerging soft materials with distinct metal active centers, multifunctional ligands and hierarchical porous structures, showing promising potential in the field of electrocatalysis. However, the reconfiguration of MOGs during the electrocatalytic process remains underexplored, with current studies in early developmental stages. To deeply investigate the application of MOG materials in electrocatalysis, the compositional transformations and structural changes under an electrochemical activation method were studied in detail, leading to high-performance OER pre-electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!