Background: A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis.

Results: Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes.

Conclusions: Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are redirected away from several other critical metabolic processes, including ribose and glutathione synthesis. These alterations lead to both a decrease in cellular proliferation and increased sensitivity to ROS. Collectively, these data reveal a role for p53 in cellular metabolic reprogramming under acidosis, in order to permit increased bioenergetic capacity and ROS neutralization. Understanding the metabolic adaptations that cancer cells make under acidosis may present opportunities to generate anti-tumor therapeutic agents that are more tumor-specific.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178214PMC
http://dx.doi.org/10.1186/2049-3002-1-23DOI Listing

Publication Analysis

Top Keywords

acidosis
15
cellular metabolism
8
metabolic
8
metabolic adaptations
8
cancer cells
8
cells exposed
8
increased glutaminolysis
8
metabolic intermediates
8
tca cycle
8
gsh synthesis
8

Similar Publications

An ascaris twist.

S Afr J Surg

December 2024

George Regional Hospital, South Africa.

A five-year-old male presented with small bowel obstruction and a worm bolus on a plain abdominal radiograph. Peritonism and acidosis prompted laparotomy after a short period of resuscitation. At surgery a worm bolus had caused a small bowel volvulus with a segment of necrosis that was successfully managed by detorsion and resection.

View Article and Find Full Text PDF

Empyema, a type of pleural effusion characterized by pus accumulation in the pleural space, is most often caused by bacterial infections, typically as a complication of pneumonia. This case report presents a 70-year-old man with chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, and chronic bilateral hydropneumothoraces, who developed pyopneumothorax due to dual infections with  and . The patient presented with worsening dyspnea, hypoxemia, and respiratory acidosis, requiring hospitalization and chest tube thoracostomy.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs), such as pembrolizumab, have revolutionized cancer therapy but can lead to severe immune-related adverse events (irAEs). We present a case of fulminant type 1 diabetes mellitus (T1DM) with diabetic ketoacidosis (DKA) and mesenteric ischemia in a 78-year-old woman with recurrent stage IIIC1 cervical cancer treated with pembrolizumab. Thirty-four days after initiating a pembrolizumab-containing regimen, she presented with vomiting, severe hyperglycemia, metabolic acidosis, and strongly positive urine ketones.

View Article and Find Full Text PDF

Significant changes in pre-dialytic partial pressure of CO (pCO) during a week-long cycle of hemodialysis (HD) can be an effect of the intermittent supplementation of bicarbonate to correct chronic acidosis in patients. Mathematical modeling efforts carried out using the same parameters before each HD session might fail to produce accurate predictions of pCO and plasma bicarbonate concentration (C) because of this variability. A numerical model describing acid-base equilibrium changes during HD was applied to predict pCO, pH, and C in 24 chronic HD patients, using both fixed parameters for the whole week and estimating a new value of minute ventilation (V) and net acid generation rate (G) for each interdialytic interval.

View Article and Find Full Text PDF

Chronic kidney disease.

Nat Rev Dis Primers

January 2025

Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany.

Chronic kidney disease (CKD) is defined by persistent abnormalities of kidney function or structure that have consequences for the health. A progressive decline of excretory kidney function has effects on body homeostasis. CKD is tightly associated with accelerated cardiovascular disease and severe infections, and with premature death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!