The mixed-field orientation of an asymmetric-rotor molecule with its permanent dipole moment nonparallel to the principal axes of polarizability is investigated experimentally and theoretically. We find that for the typical case of a strong, nonresonant laser field and a weak static electric field complete 3D orientation is induced if the laser field is elliptically polarized and if its major and minor polarization axes are not parallel to the static field. For a linearly polarized laser field solely the dipole moment component along the most polarizable axis of the molecule is relevant resulting in 1D orientation even when the laser polarization and the static field are nonparallel. Simulations show that the dipole moment component perpendicular to the most-polarizable axis becomes relevant in a strong dc electric field combined with the laser field. This offers an alternative approach to 3D orientation by combining a linearly polarized laser field and a strong dc electric field arranged at an angle equal to the angle between the most polarizable axis of the molecule and its permanent dipole moment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4848735DOI Listing

Publication Analysis

Top Keywords

laser field
20
dipole moment
16
electric field
12
field
10
mixed-field orientation
8
molecule permanent
8
permanent dipole
8
static field
8
linearly polarized
8
polarized laser
8

Similar Publications

3D Femtosecond Laser Beam Deflection for High-Precision Fabrication and Modulation of Individual Voxelated PCM Meta-Atoms.

Adv Sci (Weinh)

January 2025

Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Optical metasurfaces have found widespread applications in the field of optoelectronic devices. However, achieving dynamic and flexible control over metasurface functionalities, while also developing simplified fabrication methods for metasurfaces, continues to pose a significant challenge. Here, the study introduces a PCM-only metasurface that exclusively consists of voxel units crafted from different phases of phase-change materials.

View Article and Find Full Text PDF

Decoupling Carrier Dynamics and Energy Transport in Ultrafast Near-Field Nanoscopy.

Nano Lett

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.

View Article and Find Full Text PDF

When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!