The interaction of the water-soluble conjugated polyelectrolyte (CPE) poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl} (PBS-PFP) (degree of polymerization, DP, ∼3-6) with various concentrations of a homologous series of oppositely charged amphiphilic phenylenevinylene oligomers was investigated in water:dioxane mixtures and in aqueous micellar solutions of the non-ionic surfactant n-dodecylpentaoxyethylene glycol ether. The excellent spectral overlap between the CPE fluorescence and the conjugated oligoelectrolyte (COE) absorption indicates that energy transfer between these is a highly favored process, and can be tuned by changing the COE chain length. This is supported by time-resolved fluorescence data. The overall results provide support for different types of self-assembly, which are sensitive to the solvent environment and to the size of the phenylenevinylene oligoelectrolyte chain. It is suggested that large aggregates are formed in water:dioxane mixtures, while decorated core-shell structures are present in the surfactant solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp409577y | DOI Listing |
Toxins (Basel)
January 2025
Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Virus filtration is used to ensure the high level of virus clearance required in the manufacture of biopharmaceutical products such as monoclonal antibodies. Flux decline during virus filtration can occur due to the formation of reversible aggregates consisting of self-assembled monomeric monoclonal antibody molecules, particularly at high antibody concentrations. While size exclusion chromatography is generally unable to detect these reversible aggregates, dynamic light scattering may be used to determine their presence.
View Article and Find Full Text PDFGels
January 2025
Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia.
Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China. Electronic address:
In this study, we constructed a pH/laccase dual responsive drug delivery system, denoted as IMI@(CMCS+SL)n, capable of modulating wall thickness and drug release via the layer-by-layer deposition of carboxymethyl chitosan (CMCS) and sodium lignosulfonate (SL). The IMI@(CMCS+SL)n microcapsules was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), (energy-dispersive X-ray spectroscopy) EDS, X-ray photoelectron spectroscopy (XPS), and dynamic light scattering techniques (DLS) analysis. IMI@(CMCS+SL)n demonstrated not only a high loading capacity (exceeding 90 %) but also exhibited exceptional performance in sustained release and anti-termite activity of IMI.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!