Solution pH and the pKa values of ionizable residues are critical factors known to influence enzyme catalysis, structural stability, and dynamical fluctuations. Presented here is an exhaustive computational study utilizing long time constant pH molecular dynamics, pH replica exchange simulations, and kinetic modeling to evaluate pH-dependent conformations, charge dynamics, residue pKa values, and the catalytic activity-pH profile for cellobiohydrolase Cel7B from Melanocarpus albomyces . The predicted pKa values support the role of Glu212 as the catalytic nucleophile and Glu217 as the acid-base residue. The presence of a charge-correlated active site and an extensive hydrogen bonding network is found to be critical in enabling favorable residue orientations for catalysis and shuttling excess protons around the active site. Clusters of amino acids are identified that act in concert to effectively modulate the optimal pH for catalysis while elevating the overall catalytic rate with respect to a noncoupled system. The work presented here demonstrates the complex and critical role of coupled ionizable residues to the proper functioning of cellobiohydrolase Cel7B, functionally related glycosyl hydrolases, and enzymes in general. The simulations also support the use of the CpHMD for the accurate prediction of residue pKa values and to evaluate the impact of pH on protein structure and charge dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp408536s | DOI Listing |
J Pharm Biomed Anal
January 2025
Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey.
This study aimed to determine the chromatographic retention and dissociation/protonation constant (pK) values of lapatinib and tamoxifen, key drugs used in metastatic breast cancer treatment, at 37°C using both conventional and green high-performance liquid chromatography (HPLC) methods. Qualitative analysis was conducted on an XTerra C18 column (250 ×4.6 mm I.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany.
Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound p values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain p values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Intermolecular Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.
View Article and Find Full Text PDFChemMedChem
January 2025
Crystals First GmbH, -, GERMANY.
Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!