Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Object: Cervical arthroplasty with an artificial disc (AD) has emerged as an alternative to anterior cervical discectomy and fusion (ACDF) for the management of cervical spondylosis. This study aims to provide 3D motion analysis data comparing patients after ACDF and AD replacement.
Methods: Ten patients who underwent C5-6 ACDF and 7 who underwent C5-6 AD replacement were enrolled. Using biplanar fluoroscopy and a model-based track technique (accurate up to 0.6 mm and 0.6°), motion analysis of axial rotation and flexion-extension of the neck was performed. Three nonoperative segments (C3-4, C4-5, and C6-7) were assessed for both intervertebral rotation (coronal, sagittal, and axial planes) and facet shear (anteroposterior and mediolateral).
Results: There was no difference in total neck motion comparing ACDF and AD replacement for neck extension (43.3° ± 10.2° vs 44.3° ± 12.6°, p = 0.866) and rotation (36.0° ± 6.5° vs 38.2° ± 9.3°, p = 0.576). For extension, when measured as a percentage of total neck motion, there was a greater amount of rotation at the nonoperated segments in the ACDF group than in the AD group (p = 0.003). When comparing specific motion segments, greater normalized rotation was seen in the ACDF group at C3-4 (33.2% ± 4.9% vs 26.8% ± 6.6%, p = 0.036) and C6-7 (28.5% ± 6.7% vs 20.5% ± 5.5%, p = 0.009) but not at C4-5 (33.5% ± 6.4% vs 31.8% ± 4.0%, p = 0.562). For neck rotation, greater rotation was observed at the nonoperative segments in the ACDF group than in the AD group (p = 0.024), but the differences between individual segments did not reach significance (p ≥ 0.146). Increased mediolateral facet shear was seen on neck extension with ACDF versus AD replacement (p = 0.008). Comparing each segment, C3-4 (0.9 ± 0.5 mm vs 0.4 ± 0.1 mm, p = 0.039) and C4-5 (1.0 ± 0.4 mm vs 0.5 ± 0.2 mm, p = 0.022) showed increased shear while C6-7 (1.0 ± 0.4 mm vs 1.0 ± 0.5 mm, p = 0.767) did not.
Conclusions: This study illustrates increased motion at nonoperative segments in patients who have undergone ACDF compared with those who have undergone AD replacement. Further studies will be required to examine whether these changes contribute to adjacent-segment disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2013.11.SPINE13392 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!