On the intrinsic disorder status of the major players in programmed cell death pathways.

F1000Res

Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Byrd Alzheimer's Research Institute, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Russian Federation.

Published: December 2013

Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829196PMC
http://dx.doi.org/10.12688/f1000research.2-190.v1DOI Listing

Publication Analysis

Top Keywords

intrinsic disorder
12
disorder status
12
proteins involved
12
status major
8
major players
8
programmed cell
8
cell death
8
players programmed
4
death pathways
4
pathways earlier
4

Similar Publications

Objectives: Type 2 diabetes mellitus (T2DM) significantly deteriorates patients' quality of life (QOL). This study examined the dynamic interplay of factors that influence QOL in patients with T2DM, utilizing concepts from positive psychology and intrinsic mechanisms, to lay the groundwork for improving patient outcomes. Improving self-management behaviors is essential for effective disease management.

View Article and Find Full Text PDF

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine.

Small Methods

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

Neural cue reactivity and intrinsic functional connectivity in individuals with alcohol use disorder following treatment with topiramate or naltrexone.

Psychopharmacology (Berl)

January 2025

Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia.

Rationale: Both topiramate and naltrexone have been shown to affect neural alcohol cue reactivity in alcohol use disorder (AUD). However, their comparative effects on alcohol cue reactivity are unknown. Moreover, while naltrexone has been found to normalize hyperactive localized network connectivity implicated in AUD, no studies have examined the effect of topiramate on intrinsic functional connectivity or compared functional connectivity between these two widely used medications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!