The protective effects of Da Chai Hu Granules (DCHKL) on islet cells which were incubated with 4 mmol x L(-1) alloxan (AXN) were studied. The viability of islet cells were measured with MTT. Insulin released into medium and in islets was detected by radioimmunoassay. Cell apoptosis rate was determined by flow cytometry. The expression of anti-apoptotic gene Bcl-2 and pro-apoptotic gene Bax in islet cells were measured with RT-PCR (reverse transcription polymerase chain reaction). Serum containing DCHKL can promote the activity of islet cells significantly (P < 0.01). Basal insulin secretion and high glucose-stimulated insulin secretion increased significantly (P < 0.01). Serum containing DCHKL can inhibit apoptosis of islet cells, the ratio of apoptosis was decreased. Serum containing DCHKL increased expression of Bcl-2 mRNA and decreased expression of Bax mRNA. DCHKL can significantly promote proliferation of islet cells and increase the amount of basal secretion of pancreatic islet cells and high glucose-stimulated insulin secretion. The expression of Bcl-2 increased significantly. The expression of Bax decreased significantly. DCHKL have a protective effect on the islet cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

islet cells
32
serum dchkl
12
insulin secretion
12
effects chai
8
chai granules
8
granules dchkl
8
islet
8
cells
8
cells measured
8
dchkl promote
8

Similar Publications

Enhanced Dynorphin Expression and Secretion in Pancreatic Beta-Cells Under Hyperglycemic Conditions.

Mol Metab

December 2024

Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA. Electronic address:

Objective: Dynorphin, an endogenous opioid peptide predominantly expressed in the central nervous system and involved in stress response, pain, and addiction, has intrigued researchers due to its expression in pancreatic β-cells. In this study, we aimed to characterize dynorphin expression in mouse and human islets and explore the mechanisms regulating its expression.

Methods: We used primary mouse and human islets with unbiased published datasets to examine how glucose and other nutrients regulate dynorphin expression and secretion in islets.

View Article and Find Full Text PDF

Identifying Promising Immunomodulators for Type 1 Diabetes (T1D) and Islet Transplantation.

J Diabetes Res

December 2024

Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.

Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response.

View Article and Find Full Text PDF

Hypoglycemia in non-diabetic individuals is a rare but critical condition that often signals an underlying pathology. Insulinoma, a rare neuroendocrine tumor of the pancreas, is a key differential diagnosis. As the most common functional pancreatic neuroendocrine tumors, insulinomas originate from pancreatic islet cells and are predominantly benign.

View Article and Find Full Text PDF

This study aimed to verify the effect of angiotensin (1-7) on improving islet function and further explore the signaling pathway that may be involved in this improvement. It also aimed to explore the effects of angiotensin (1-7) on blood glucose levels, islet function, and morphological changes in db/db mice and its potential signal pathway. Forty-five db/db mice were divided randomly into a model control group and different doses of angiotensin (1-7) intervention groups (0, 150, 300, and 600 g/kg/d), while seven db/m mice were assigned as the normal control group.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!