Genetic consequences of historical anthropogenic and ecological events on giant pandas.

Ecology

Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Chaoyang, Beijing 100101 China.

Published: October 2013

The giant panda (Ailuropoda melanoleuca) was taken to the brink of extinction in the 1980s through a combination of deforestation, large-scale loss of bamboo in the core of its range, poaching, and zoo collection, causing over 1000 deaths from the 1950s. It was thought that the drastic population decline was likely to impose a severe impact on population viability. Here, based on temporal genotyping of individuals, we show that this rapid decline did not significantly reduce the overall effective population size and genetic variation of this species, or of the two focal populations (Minshan and Qionglai) that declined the most. These results are contrary to previously assumptions, probably because the population decline has not produced the expected negative impact due to the short time scale involved (at most 10 generations), or because previous surveys underestimated the population size at the time of decline. However, if present-day habitat fragmentation and limited migration of giant pandas remains, we predict a loss of genetic diversity across the giant pandas' range in the near future. Thus, our findings highlight the substantial resilience of this species when facing demographic and environmental stochasticity, but key conservation strategies, such as enhancing habitat connectivity and habitat restoration should be immediately implemented to retain the extant genetic variation and maintain long-term evolutionary potential of this endangered species.

Download full-text PDF

Source
http://dx.doi.org/10.1890/12-1451.1DOI Listing

Publication Analysis

Top Keywords

giant pandas
8
population decline
8
population size
8
genetic variation
8
population
5
genetic
4
genetic consequences
4
consequences historical
4
historical anthropogenic
4
anthropogenic ecological
4

Similar Publications

Efficacy of azithromycin combined with compounded atovaquone in treating babesiosis in giant pandas.

Parasit Vectors

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China.

Background: Babesia is a tick-borne protozoan blood parasite that can cause hemolytic anemia, thrombocytopenia, lethargy and splenomegaly in giant pandas.

Methods: We evaluated the efficacy and safety profile of a therapeutic regimen combining atovaquone and zithromycin in the context of babesiosis in giant pandas that have been naturally infected. The examined pandas underwent clinical and laboratory analyses, including hematology, biochemistry and thyroid hormone profiles.

View Article and Find Full Text PDF

EVIDENCE FOR ADRENAL DYSFUNCTION CONTRIBUTING TO PERACUTE MORTALITY SYNDROME IN RED PANDA ().

J Zoo Wildl Med

December 2024

Zoological Pathology Program, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Brookfield, IL 60513, USA.

Red pandas () are endangered with extinction due to deforestation and habitat fragmentation. Reported causes of unexpected death in managed red pandas include kidney, liver, gastrointestinal, and cardiac disease. A previously undetailed syndrome, red panda peracute mortality syndrome, may be emerging, as red pandas have died unexpectedly, with no clear cause of death identified at necropsy.

View Article and Find Full Text PDF

Andean bears (Tremarctos ornatus) display selective behaviors while foraging bromeliads (Puya spp.) in high elevation puna grasslands.

PLoS One

December 2024

Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California, United States of America.

Andean bears (Tremarctos ornatus) forage extensively on bromeliads (Puya spp.) across their range, although their selectivity for bromeliads is less understood. We report on foraging activity by Andean bears on two species of bromeliad, Puya leptostachya and Puya membranacea, in high elevation puna grasslands (3499-3806 m.

View Article and Find Full Text PDF

The red panda (Ailurus), a rare and endangered mammal native to the Himalayan-Hengduan Mountains, has a specialized bamboo diet. Combining morphological and genomic evidence, red pandas have been classified as and . However, previous studies focused on ecological aspects such as foraging behaviors, habitat use and threats within specific distributions; hence, there is still a gap in quantitative comparative studies on the trophic niches of these two species.

View Article and Find Full Text PDF

Biochemical Characteristics of Urine Metabolomics in Female Giant Pandas at Different Estrous Stages.

Animals (Basel)

December 2024

Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The composition of urinary metabolites can reflect the physiological state of animals. Investigating the alterations in urine metabolomics during the estrus stage can provide valuable insights for enhancing the efficacy of estrus monitoring. This study aimed to perform an analysis of urinary metabolomics in female giant pandas, specifically examining the variations in specific metabolites across different estrous stages, namely, diestrus, proestrus, estrus, and metestrus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!