Analysis of high affinity self-association by fluorescence optical sedimentation velocity analytical ultracentrifugation of labeled proteins: opportunities and limitations.

PLoS One

Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, United States of America.

Published: October 2014

Sedimentation velocity analytical ultracentrifugation (SV) is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS) permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein) was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866193PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083439PLOS

Publication Analysis

Top Keywords

fluorescence optical
8
sedimentation velocity
8
velocity analytical
8
analytical ultracentrifugation
8
analysis
4
analysis high
4
high affinity
4
affinity self-association
4
self-association fluorescence
4
optical sedimentation
4

Similar Publications

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy.

J Med Chem

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.

View Article and Find Full Text PDF

Polarity-sensitive pyrene fluorescent probes for multi-organelle imaging in living cells.

Chem Commun (Camb)

January 2025

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China.

Polarity-sensitive probes (PAS) were synthesized through the attachment of azetidine and sulfonyl substituents to the pyrene fluorescent core. The emission peaks and fluorescence lifetimes of these PAS probes exhibit high sensitivity to polarity, enabling the visualization of microenvironmental characteristics and dynamics across multiple organelles.

View Article and Find Full Text PDF

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!