Cleavage and polyadenylation specific factor 4 (CPSF4), a member of CPSF complex, plays a key role in mRNA polyadenylation and mRNA 3' ends maturation. However, its possible role in lung cancer pathogenesis is unknown. In this study, we investigated the biological role and clinical significance of CPSF4 in lung cancer growth and survival and elucidated its underlying molecular mechanisms. We found that CPSF4 was highly expressed in lung adenocarcinoma cell lines and tumor tissue but was undetectable in 8 normal human tissues. We also found that CPSF4 overexpression was correlated with poor overall survival in patients with lung adenocarcinomas (P<0.001). Multivariate survival analyses revealed that higher CPSF4 expression was an independent prognostic factor for overall survival of the patients with lung adenocarcinomas. Suppression of CPSF4 by siRNA inhibited lung cancer cells proliferation, colony formation, and induced apoptosis. Mechanism studies revealed that these effects were achieved through simultaneous modulation of multiple signaling pathways. Knockdown of CPSF4 expression by siRNA markedly inhibited the phosphorylation of PI3K, AKT and ERK1/2 and JNK proteins. In contrast, the ectopic expression of CPSF4 had the opposite effects. Moreover, CPSF4 knockdown also induced the cleavage of caspase-3 and caspse-9 proteins. Collectively, these results demonstrate that CPSF4 plays a critical role in regulating lung cancer cell proliferation and survival and may be a potential prognostic biomarker and therapeutic target for lung adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865097 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082728 | PLOS |
Front Biosci (Schol Ed)
December 2024
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
SINEs are mobile genetic elements of multicellular eukaryotes that arose during evolution from various tRNAs, as well as from 5S rRNA and 7SL RNA. Like the genes of these RNAs, SINEs are transcribed by RNA polymerase III. The transcripts of some mammalian SINEs have the capability of AAUAAA-dependent polyadenylation, which is unique for transcript generated by RNA polymerase III.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) relies upon a broad array of host factors in order to replicate and evade the host antiviral response. Cleavage and polyadenylation specificity factor 6 (CPSF6) is one such host factor that is recruited by incoming HIV-1 cores to regulate trafficking, nuclear import, uncoating, and integration site selection. Despite these well-described roles, the impact of CPSF6 perturbation on HIV-1 infectivity varies considerably by cell type.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
December 2024
Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Background: Sugarcane is host of many viral pathogens that affects its growth and productivity. High-throughput sequencing (HTS) is comprehensive diagnostic platform that permit the precise detection of viral pathogens to resolve the disease epidemiology of the crop, thus providing the phytosanitary status of plants. The current work was designed to comprehend the virome profiling of sugarcane belonging to five varieties collected from the major crop producing states in India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!