A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A model to discriminate malignant from benign thyroid nodules using artificial neural network. | LitMetric

Objective: This study aimed to construct a model for using in differentiating benign and malignant nodules with the artificial neural network and to increase the objective diagnostic accuracy of US.

Materials And Methods: 618 consecutive patients (528 women, 161 men) with 689 thyroid nodules (425 malignant and 264 benign nodules) were enrolled in the present study. The presence and absence of each sonographic feature was assessed for each nodule - shape, margin, echogenicity, internal composition, presence of calcifications, peripheral halo and vascularity on color Doppler. The variables meet the following criteria: important sonographic features and statistically significant difference were selected as the input layer to build the ANN for predicting the malignancy of nodules.

Results: Six sonographic features including shape (Taller than wide, p<0.001), margin (Not Well-circumscribed, p<0.001), echogenicity (Hypoechogenicity, p<0.001), internal composition (Solid, p<0.001), presence of calcifications (Microcalcification, p<0.001) and peripheral halo (Absent, p<0.001) were significantly associated with malignant nodules. A three-layer 6-8-1 feed-forward ANN model was built. In the training cohort, the accuracy of the ANN in predicting malignancy of thyroid nodules was 82.3% (AURO  = 0.818), the sensitivity and specificity was 84.5% and 79.1%, respectively. In the validation cohort, the accuracy, sensitivity and specificity was 83.1%, 83.8% and 81.8%, respectively. The AUROC was 0.828.

Conclusion: ANN constructed by sonographic features can discriminate benign and malignant thyroid nodules with high diagnostic accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864947PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082211PLOS

Publication Analysis

Top Keywords

thyroid nodules
8
nodules artificial
8
artificial neural
8
neural network
8
sonographic features
8
model discriminate
4
discriminate malignant
4
malignant benign
4
benign thyroid
4
nodules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!