Anemia of inflammation (AI) is commonly observed in chronic inflammatory states and may hinder patient recovery and survival. Induction of hepcidin, mediated by interleukin 6, leads to iron-restricted erythropoiesis and anemia. Several translational studies have been directed at neutralizing hepcidin overexpression as a therapeutic strategy against AI. However, additional hepcidin-independent mechanisms contribute to AI, which are likely mediated by a direct effect of inflammatory cytokines on erythropoiesis. In this study, we used wild-type, hepcidin knockout (Hamp-KO) and interleukin 6 knockout (IL-6-KO) mice as models of AI. AI was induced with heat-killed Brucella abortus (BA). The distinct roles of iron metabolism and inflammation triggered by interleukin 6 and hepcidin were investigated. BA-treated wild-type mice showed increased expression of hepcidin and inflammatory cytokines, as well as transitory suppression of erythropoiesis and shortened red blood cell lifespan, all of which contributed to the severe anemia of these mice. In contrast, BA-treated Hamp-KO or IL-6-KO mice showed milder anemia and faster recovery compared with normal mice. Moreover, they exhibited different patterns in the development and resolution of anemia, supporting the notion that interleukin 6 and hepcidin play distinct roles in modulating erythropoiesis in AI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931188PMC
http://dx.doi.org/10.1182/blood-2013-08-521625DOI Listing

Publication Analysis

Top Keywords

distinct roles
12
anemia mice
8
heat-killed brucella
8
brucella abortus
8
inflammatory cytokines
8
il-6-ko mice
8
interleukin hepcidin
8
hepcidin
7
anemia
6
mice
6

Similar Publications

Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.

View Article and Find Full Text PDF

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).

View Article and Find Full Text PDF

Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis.

Membranes (Basel)

December 2024

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.

View Article and Find Full Text PDF

Background: Intraoperative neuromonitoring (IONM) is crucial for the safety of scoliosis surgery, providing real-time feedback on the spinal cord and nerve function, primarily through motor-evoked potentials (MEPs). The choice of anesthesia plays a crucial role in influencing the quality and reliability of these neuromonitoring signals. This systematic review evaluates how different anesthetic techniques-total intravenous anesthesia (TIVA), volatile anesthetics, and regional anesthesia approaches such as Erector Spinae Plane Block (ESPB), spinal, and epidural anesthesia-affect IONM during scoliosis surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!