Aim: We hypothesized that dipeptidyl peptidase (DPP)-4 inhibitor (vildagliptin) reduces fatal arrhythmias, cardiac dysfunction and infarct size caused by ischaemia-reperfusion (I/R) injury via its attenuation of cardiac mitochondrial dysfunction.

Methods: In total, 26 rats were randomized to receive either 1 mL normal saline solution or 2.0 mg/kg vildagliptin intravenously (n = 13/group) 30 min prior to a 30-min left anterior descending coronary artery occlusion, followed by a 120-min reperfusion. Arrhythmia scores, cardiac functions, infarct size and mitochondrial function were evaluated.

Results: Vildagliptin reduced the infarct size by 44% and mitigated cardiac dysfunction by preserving cardiac function without altering the incidence of cardiac arrhythmias. Vildagliptin increased expression of Bcl-2 and pro-caspase3 in the ischaemic area, whereas Bax and phosphorylated-connexin43/total-connexin43 were not altered. Vildagliptin attenuated cardiac mitochondrial dysfunction by reducing the reactive oxygen species level and mitochondrial swelling.

Conclusions: DPP-4 inhibitor provides cardioprotection by reducing the infarct size and ameliorating cardiac dysfunction in I/R hearts by attenuating cardiac mitochondrial dysfunction and cardiomyocyte apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1479164113516134DOI Listing

Publication Analysis

Top Keywords

infarct size
20
cardiac dysfunction
12
cardiac mitochondrial
12
cardiac
10
cardiac function
8
dpp-4 inhibitor
8
mitochondrial dysfunction
8
mitochondrial
6
infarct
5
size
5

Similar Publications

L. protects cerebral ischemia/reperfusion injury via arachidonic acid/p53-mediated apoptosis axis.

Front Pharmacol

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Introduction: Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries.

View Article and Find Full Text PDF

Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.

Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.

View Article and Find Full Text PDF

We investigated whether miR143#12, a synthesized chemically modified miR-143-3p derivative, exerts therapeutic effects on acute myocardial infarction (AMI). Sprague-Dawley rats and Japanese white rabbits underwent 30 min of coronary occlusion followed by 2 weeks of reperfusion. The rat AMI model was intravenously administered with control miRNA (9 μg/kg), 3 μg/kg or 9 μg/kg of miR143#12 1 h after reperfusion, while the rabbit AMI model was intravenously administered with control miRNA (9 μg/kg) or 9 μg/kg of miR143#12.

View Article and Find Full Text PDF

Background: The role of direct oral anticoagulants (DOACs) in the treatment of left ventricular thrombus (LVT) after ST-elevation myocardial infarction (STEMI) remains uncertain.

Aims: We aimed to compare the effect of rivaroxaban versus warfarin in patients with STEMI complicated by LVT.

Methods: Adult patients with STEMI and two-dimensional transthoracic echocardiography showing LVT were assigned to rivaroxaban (15 mg once daily) or warfarin (international normalised ratio goal of 2.

View Article and Find Full Text PDF

Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology.

Nutrients

December 2024

Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China.

Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!