TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989627PMC
http://dx.doi.org/10.1002/embj.201385857DOI Listing

Publication Analysis

Top Keywords

tmem106b knockdown
24
tmem106b
12
tmem106b map6
12
risk factor
8
dendritic trafficking
8
trafficking lysosomes
8
knockdown map6
8
retrograde transport
8
knockdown neurons
8
lysosomal transport
8

Similar Publications

TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches.

View Article and Find Full Text PDF

Background: TMEM106B, a lysosomal transmembrane protein, has been reported to be associated with Parkinson's disease (PD). However, the precise physiopathologic mechanism of TMEM106B in PD remains unclear.

Objective: This study aimed to explore the influence of TMEM106B on the autophagy-lysosome pathway (ALP) in PD.

View Article and Find Full Text PDF

TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches.

View Article and Find Full Text PDF

Lysosomal membrane protein TMEM106B modulates hematopoietic stem and progenitor cell proliferation and differentiation by regulating LAMP2A stability.

FASEB J

August 2024

Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Maternal and Child Health Hospital of Hubei Province, Women and Children's Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is closely related to iron accumulation and inflammation. Emerging evidence indicates that TMEM106B plays an essential role in PD. But whether TMEM106B could act on neuroinflammation and iron metabolism in PD has not yet been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!