25th anniversary article: MXenes: a new family of two-dimensional materials.

Adv Mater

Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA, 19104, USA.

Published: February 2014

AI Article Synopsis

  • Recently, researchers discovered a new family of materials called MXenes, which are two-dimensional (2D) early transition metal carbides and carbonitrides created by selectively etching elements from a group of layered compounds known as MAX phases.
  • MXenes have metallic conductivity and are characterized by their hydroxyl or oxygen-terminated surfaces, giving them properties similar to conductive clays.
  • The article reviews the current advancements in synthesizing and understanding MXenes, highlights their promising applications in areas like electrochemical energy storage, and discusses potential future research directions.

Article Abstract

Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201304138DOI Listing

Publication Analysis

Top Keywords

family two-dimensional
8
transition metal
8
metal carbides
8
mxenes
6
25th anniversary
4
anniversary article
4
article mxenes
4
mxenes family
4
two-dimensional materials
4
materials large
4

Similar Publications

Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.

View Article and Find Full Text PDF

Quantum memory at nonzero temperature in a thermodynamically trivial system.

Nat Commun

January 2025

Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.

Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.

View Article and Find Full Text PDF

The electrochemical nitric oxide reduction reaction (eNORR) is an efficient method for converting aqueous NO into NH. The pursuit of innovative electrocatalysts with enhanced activity, selectivity, durability, and cost-effectiveness for NORR remains a research focus. In this study, using particle swarm optimization (PSO) searches, density functional theory (DFT), and the constant-potential method (CPM), we predict two stable two-dimensional FeC monolayers, designated as α-FeC and β-FeC, as promising electrocatalysts for the NORR.

View Article and Find Full Text PDF

Pediatric liver transplantation (PLT) is a life-saving procedure for children with end-stage liver disease. However, post-transplant monitoring, particularly the diagnosis and prognosis of complications such as allograft fibrosis, remains challenging. Traditionally, liver biopsy has been the gold standard for assessing allograft fibrosis, despite its invasive nature and inherent procedural risks.

View Article and Find Full Text PDF

Nonlinear electron transport induced by polarized terahertz radiation is studied in two-dimensional tellurene at room temperature. A direct current, quadratic in the radiation's electric field, is observed. Contributions sensitive to radiation helicity and polarization orientation as well as polarization independent current are found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!