Purpose: Improved diagnostic sensitivity could be obtained in cancer detection and staging when individual compounds of the choline pool can be detected. Therefore, a novel coil design is proposed, providing the ability to acquire both (1) H and (31) P magnetic resonance spectroscopic imaging (MRSI) in patients with prostate cancer.

Methods: A two-element (1) H/(31) P endorectal coil was designed by adjusting a commercially available 3T endorectal coil. The two-element coil setup was interfaced as a transceiver to a whole body 7T MR scanner. Simulations and phantom measurements were performed to compare the efficiency of the coil. (1) H MRSI and (31) P MRSI were acquired in vivo in prostate cancer patients.

Results: The efficiency of the (1) H/(31) P coil is comparable to the dual channel (1) H coil previously published. Individually distinguishable phospholipid metabolites in the in vivo (31) P spectra were: phosphoethanolamine, phosphocholine, phosphate, glycerophosphoethanolamine, glycerophosphocholine, phosphocreatine, and adenosine triposphate. (1) H MRSI was performed within the same scan session, visualizing choline, polyamines, creatine, and citrate.

Conclusion: (1) H MRSI and (31) P MRSI can be acquired in the human prostate at 7T within the same scan session using an endorectal coil matched and tuned for (1) H (quadrature) and (31) P (linear) without the need of cable traps and with negligible efficiency losses in the (1) H and (31) P channel.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.25070DOI Listing

Publication Analysis

Top Keywords

endorectal coil
16
spectroscopic imaging
12
coil
9
human prostate
8
mrsi mrsi
8
mrsi acquired
8
scan session
8
mrsi
6
imaging combined
4
combined spectroscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!