Engineered skin substitutes (ESSs) have been reported to close full-thickness burn wounds but are subject to loss from mechanical shear due to their deficiencies in tensile strength and elasticity. Hypothetically, if the mechanical properties of ESS matched those of native skin, losses due to shear or fracture could be reduced. To consider modifications of the composition of ESS to improve homology with native skin, biomechanical analyses of the current composition of ESS were performed. ESSs consist of a degradable biopolymer scaffold of type I collagen and chondroitin-sulfate (CGS) that is populated sequentially with cultured human dermal fibroblasts (hF) and epidermal keratinocytes (hK). In the current study, the hydrated biopolymer scaffold (CGS), the scaffold populated with hF dermal skin substitute (DSS), or the complete ESS were evaluated mechanically for linear stiffness (N/mm), ultimate tensile load at failure (N), maximum extension at failure (mm), and energy absorbed up to the point of failure (N-mm). These biomechanical end points were also used to evaluate ESS at six weeks after grafting to full-thickness skin wounds in athymic mice and compared to murine autograft or excised murine skin. The data showed statistically significant differences (p <0.05) between ESS in vitro and after grafting for all four structural properties. Grafted ESS differed statistically from murine autograft with respect to maximum extension at failure, and from intact murine skin with respect to linear stiffness and maximum extension. These results demonstrate rapid changes in mechanical properties of ESS after grafting that are comparable to murine autograft. These values provide instruction for improvement of the biomechanical properties of ESS in vitro that may reduce clinical morbidity from graft loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023834PMC
http://dx.doi.org/10.1115/1.4026290DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
engineered skin
8
skin substitutes
8
grafting full-thickness
8
native skin
8
composition ess
8
biopolymer scaffold
8
skin
7
ess
5
development mechanical
4

Similar Publications

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

The SARS-CoV-2 virus caused the COVID-19 pandemic and brought major challenges to public health. It is transmitted via aerosols, droplets, and fomites. Among these, viral transmission through fomites is not well understood although it remains a very important transmission route.

View Article and Find Full Text PDF

The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.

View Article and Find Full Text PDF

Effect of post-processing on the surface, optical, mechanical, and dimensional properties of 3D-printed orthodontic clear retainers.

Clin Oral Investig

January 2025

School of Materials Science and Innovation, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom, 73170, Thailand.

Objectives: To address the high surface roughness and poor optical properties of three-dimensional (3D) printed orthodontic clear retainers, an alternative post-processing protocol was investigated with the goal of achieving improved surface, optical, and mechanical properties while preserving dimensional accuracy.

Materials And Methods: Samples were prepared from two biocompatible methacrylate-based 3D-printing resins (Formlabs Dental LT Clear V2, NextDent OrthoFlex) and one thermoplastic material (Duran). For the 3D-printed resins, one group was post-processed by rinsing in isopropyl alcohol, while another group was centrifuged before post-curing in glycerine.

View Article and Find Full Text PDF

Since the invention and commercialization of poly(-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!