The analysis of high molecular weight (HMW) proteins from complex mixtures is still a challenge in proteomics. This work introduces a novel hydrogel obtained by the copolymerization of an allyl-PVA derivative with acrylamide and bisacrylamide and applies this matrix to the electrophoretic separation of HMW proteins. By inducing gelation of polyacrylamide in the presence of variable amounts of allyl-PVA, it is possible to control and vary the average gel porosity. This gel is easy to produce and handle and offers the advantage of being highly mechanically resistant and macroporous. The new matrix was tested in mono-dimensional separations of complex protein mixtures extracted from red cell membranes with different detergents. The improved performance of this macroporous matrix allowed to identify new proteins by MS and immunoblot analysis using specific antibodies. In particular, the resolution of proteins ranging in size between 97 and 279 kDa was greatly improved here compared to standard polyacrylamide gels, suggesting that this matrix can be a useful tool in routine analysis of HMW proteins in cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201300529DOI Listing

Publication Analysis

Top Keywords

hmw proteins
12
high molecular
8
molecular weight
8
red cell
8
macroporous matrix
8
proteins
6
matrix
5
performance novel
4
novel sieving
4
sieving matrix
4

Similar Publications

Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.

View Article and Find Full Text PDF

Objective: The potential link between malnutrition and dysphagia along with its underlying mechanisms remains unknown. This study aimed to investigate the association between malnutrition factors and dysphagia mediated by a decline in activities of daily living (ADL) among nursing home residents.

Methods: This cross-sectional study used data from 705 nursing home residents.

View Article and Find Full Text PDF

High molecular weight hyaluronic acid alleviates ovariectomy-induced bone loss in mice.

BMC Musculoskelet Disord

December 2024

Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Institute of Science Tokyo), 1-5-45 Yushima Bunkyo-Ku, Tokyo, 113-8519, Japan.

Background: The rapid decline in ovarian function associated with menopause promotes osteoclast differentiation and increases bone resorption, disrupting of bone homeostasis and increasing the risk of osteoporosis. Hyaluronic acid (HA) is a polysaccharide ubiquitously present in the connective tissues. Recent reports indicate that high-molecular-weight HA (HMW-HA) promotes osteoblast proliferation, enhances alkaline phosphatase activity and mineral deposition, and promotes the expression of bone differentiation markers, such as Runx2 and osteocalcin.

View Article and Find Full Text PDF

The rapid expansion of medical nanotechnology has significantly broadened the potential applications of cellulose nanocrystals (CNCs). While CNCs were initially developed for drug delivery, they are now being investigated for a range of advanced biomedical applications. As these applications evolve, it becomes crucial to understand the physicochemical behavior of CNCs in biologically relevant media to optimize their design and ensure biocompatibility.

View Article and Find Full Text PDF

Clinical and Genomic Prediction of Coronary Artery Disease Subtypes.

Arterioscler Thromb Vasc Biol

January 2025

Department of Genetics and Genomic Sciences (L.L., J.G.-G., H.M.W., C.J.H., P.F.O.), Icahn School of Medicine, New York, NY.

Background: Coronary artery disease (CAD) is a complex, heterogeneous disease with distinct etiological mechanisms. These different etiologies may give rise to multiple subtypes of CAD that could benefit from alternative preventions and treatments. However, so far, there have been no systematic efforts to predict CAD subtypes using clinical and genetic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!