The world's fourth largest food crop, potato, originates in the Andes. Here, the community composition of arbuscular mycorrhizal fungi (AMF) associated with potato in Andean ecosystems is described for the first time. AMF were studied in potato roots and rhizosphere soil at four different altitudes from 2,658 to 4,075 m above mean sea level (mamsl) and in three plant growth stages (emergence, flowering, and senescence). AMF species were distinguished by sequencing an approx. 1,500 bp nuclear rDNA region. Twenty species of AMF were identified, of which 12 came from potato roots and 15 from rhizosphere soil. Seven species were found in both roots and soil. Interestingly, altitude affected species composition with the highest altitude exhibiting the greatest species diversity. The three most common colonizers of potato roots detected were Funneliformis mosseae, an unknown Claroideoglomus sp., and Rhizophagus irregularis. Notably, the potato-associated AMF diversity observed in this Andean region is much higher than that reported for potato in other ecosystems. Potato plants were colonized by diverse species from 8 of the 11 Glomeromycota families. Identification of the AMF species is important for their potential use in sustainable management practices to improve potato production in the Andean region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-013-0549-0 | DOI Listing |
Plants (Basel)
January 2025
Earth Sciences Department, NOVA School of Sciences and Technology, Campus de Caparica, 2829-516 Caparica, Portugal.
Potato ( L.) is the world's third most popular vegetable in terms of consumption and the fourth most produced. Potatoes can be easily cultivated in different climates and locations around the globe and often in soils contaminated by heavy metals due to industrial activities.
View Article and Find Full Text PDF3 Biotech
February 2025
Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.
A protocol for micropropagation of potato ( L.) cv. Cooch Behar local retaining the fidelity of the in vitro regenerants was established for the first time.
View Article and Find Full Text PDFAmbio
January 2025
ECOAN, Pasaje Navidad U-10, Urb. Ttio, Wanchaq, Cusco, Peru.
The Inca and their immediate predecessors provide an exceptional model of how to create high-altitude functional environments that sustainably feed people with a diversity of crops, whilst mitigating erosion, protecting forestry and maintaining soil fertility without the need for large-scale burning. A comparison is provided here of landscape practices and impacts prior to and after the Inca, derived from a unique 4200-year sedimentary record recovered from Laguna Marcacocha, a small, environmentally sensitive lake located at the heart of the Inca Empire. By examining ten selected proxies of environmental change, a rare window is opened on the past, helping to reveal how resilient watershed management and sustainable, climate-smart agriculture were achieved.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China. Electronic address:
Starch degradation and wound healing occur in potato tubers following fresh-cut processing, and ascorbic acid (AA) treatment can suppress these processes, though the underlying regulatory mechanisms remain unclear. This study investigated the effects of 5 g L AA treatment on the multiscale structural changes and metabolic responses of starch during wound healing in fresh-cut potatoes. The results revealed that AA treatment delayed starch degradation and reducing sugar accumulation while promoting sucrose and fructose accumulation.
View Article and Find Full Text PDFPlant Dis
January 2025
Department of Plant Pathology, Foundation Plant Services, Davis, CA 95616, U.S.A.
Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!