Metals have vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules in which metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal-binding environments. The CheckMyMetal (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal-binding sites in macromolecular structures using parameters derived from 7,350 metal-binding sites observed in a benchmark data set of 2,304 high-resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal-binding sites, as well as how it can alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal-binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the ANTICIPATED RESULTS section. CMM was designed for a broad audience--biomedical researchers studying metal-containing proteins and nucleic acids--but it is equally well suited for structural biologists validating new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure with 2-5 metal sites and a few hundred amino acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410975 | PMC |
http://dx.doi.org/10.1038/nprot.2013.172 | DOI Listing |
Molecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
Precise binding free-energy predictions for ligands targeting metalloproteins, especially zinc-containing histone deacetylase (HDAC) enzymes, require specialized computational approaches due to the unique interactions at metal-binding sites. This study evaluates a docking algorithm optimized for zinc coordination to determine whether it could accurately differentiate between protonated and deprotonated states of hydroxamic acid ligands, a key functional group in HDAC inhibitors (HDACi). By systematically analyzing both protonation states, we sought to identify which state produces docking poses and binding energy estimates most closely aligned with experimental values.
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA.
The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, China.
Macromol Rapid Commun
December 2024
Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland.
The rational design and production of a novel series of engineered protein cages are presented, which have emerged as versatile and adaptable platforms with significant applications in biomedicine. These protein cages are assembled from multiple protein subunits, and precise control over their interactions is crucial for regulating assembly and disassembly, such as the on-demand release of encapsulated therapeutic agents. This approach employs a homo-undecameric, ring-shaped protein scaffold with strategically positioned metal binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!