Aqueous-phase reactions of organic compounds are of general importance in environmental systems. Reactions of α-dicarbonyl compounds in the aqueous phase of atmospheric aerosols can impact their climate-relevant physical properties including hygroscopicity and absorption of light. Less-reactive water-soluble organic compounds may contribute an organic matrix component to the aqueous environment, potentially impacting the reaction kinetics. In this work we demonstrate the effects of organic matrices on the self-reactions of glyoxal (Gly) and methylglyoxal (mGly) in aqueous solutions containing ammonium sulfate. At an organic-to-sulfate mass ratio of 2 : 1, carbohydrate-like matrices resembling oxidized organic aerosol material reduce the rate of formation of light-absorbing products by up to an order of magnitude. The greatest decreases in the reaction rates were observed for organic matrices with smaller, more linear molecular structures. Initial UV-Vis spectra, product studies, relative rate data, acidity changes, and viscosity measurements suggest that shifts in carbonyl equilibria, due in part to (hemi)acetal formation with the matrix, reduce the rate of formation of light-absorbing imidazole and oligomer species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3em00579h | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91106.
Aerosol light absorption has been widely considered as a contributing factor to the worsening of particulate pollution in large urban areas, primarily through its role in stabilizing the planetary boundary layer (PBL). Here, we report that absorption-dominated aerosol-radiation interaction can decrease near-surface fine particulate matter concentrations ([PM]) at a large-scale during wintertime haze events. A "warm bubble" effect by the significant heating rate of absorbing aerosols above the PBL top generates a secondary circulation, enhancing the upward motion (downward motion) and the convergence (divergence) in polluted (relatively clean) areas, with a net effect of lowering near-surface [PM].
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
Quantum chemical calculations were employed to construct Jablonski diagrams for a series of phenolic carbonyls, including vanillin, iso-vanillin, 4-hydroxybenzaldehyde, syringaldehyde, and coniferyl aldehyde. These molecules can enter the Earth's atmosphere from forest fire emissions and participate in photochemical reactions within the atmospheric condensed phase, including cloud and fog droplets and aqueous aerosol particles. This photochemistry alters the composition of light-absorbing organic content, or brown carbon, in droplets and particles through the formation and destruction of key chromophores.
View Article and Find Full Text PDFChemistry
January 2025
NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
Phytochromes perceive subtle changes in the light environment and convert them into biological signals by photoconversion between the red-light absorbing (Pr) and the far-red-absorbing (Pfr) states. In the primitive bacteriophytochromes this includes refolding of a tongue-like hairpin loop close to the chromophore, one strand of an antiparallel β-sheet being replaced by an α-helix. However, the strand sequence in the cyanobacterial phytochrome Cph1 is different from that of previously investigated bacteriophytochromes and has a higher β-sheet propensity.
View Article and Find Full Text PDFISME J
January 2024
Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!