Objectives: Diabetic cardiac autonomic neuropathy can lead to an increased incidence of ventricular arrhythmias (VAs). However, few data are available regarding the pathogenesis and therapy of the VAs accompanying diabetic cardiac autonomic neuropathy. We aimed to explore whether or not exogenous nerve growth factor (NGF) can reduce the sympathetic heterogeneity and the incidence of VAs in diabetes mellitus (DM).

Methods: Male Wistar rats were randomly divided into 3 groups: controls, rats with DM with saline infused into the left stellate ganglion (LSG), i.e. the DS group and rats with DM with NGF infused into the LSG, i.e. the DN group. After 28 weeks, all rats were subjected to electrophysiological experiments. Sympathetic innervations and NGF were studied by immunostaining, RT-PCR or Western blot analysis.

Results: The incidence of inducible VAs was significantly higher in the DS group than in the control group, but was markedly decreased in the DN group. In the DS group, the tyrosine hydroxylase (TH) and NGF expression were significantly lower than in the other groups, and significant proximal-distal heterogeneities existed regarding the TH and NGF expression in the left ventricle, but were markedly repaired in the DN group.

Conclusions: NGF intervention in the LSG can reduce the heterogeneity of cardiac sympathetic innervations and the incidence of VAs in diabetic rats.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000355535DOI Listing

Publication Analysis

Top Keywords

exogenous nerve
8
nerve growth
8
growth factor
8
cardiac sympathetic
8
sympathetic heterogeneity
8
diabetic rats
8
diabetic cardiac
8
cardiac autonomic
8
autonomic neuropathy
8
incidence vas
8

Similar Publications

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

. Leber hereditary optic neuropathy (LHON) is a condition characterized by bilateral acute or subacute vision loss in seemingly healthy individuals. Depending on the disease stage and initial presentation, it is often diagnosed as optic neuritis.

View Article and Find Full Text PDF

α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!