The focusing performance of a multilayer Laue lens (MLL) with 43.4 μm aperture, 4 nm finest zone width and 4.2 mm focal length at 12 keV was characterized with X-rays using ptychography method. The reconstructed probe shows a full-width-at-half-maximum (FWHM) peak size of 11.2 nm. The obtained X-ray wavefront shows excellent agreement with the dynamical calculations, exhibiting aberrations less than 0.3 wave period, which ensures the MLL capable of producing a diffraction-limited focus while offering a sufficient working distance. This achievement opens up opportunities of incorporating a variety of in-situ experiments into ultra high-resolution X-ray microscopy studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868962PMC
http://dx.doi.org/10.1038/srep03562DOI Listing

Publication Analysis

Top Keywords

multilayer laue
8
laue lens
8
hard x-ray
4
x-ray focus
4
focus large-aperture
4
large-aperture multilayer
4
lens focusing
4
focusing performance
4
performance multilayer
4
lens mll
4

Similar Publications

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

We theoretically investigate the impact of nonlinear dispersion of crystals and multilayers used in Laue-type pulse compressors (LPCs) on chirped x-ray pulse compression, as well as the optimization method for the configuration of LPCs. We also study the application of LPCs to compress chirped x-ray free-electron laser pulses based on the parameters of LCLS-II-HE. The results show that the optimal thickness is half of the Pendellosung period, yielding the best compressor performance with minimal impact from the nonlinear dispersion.

View Article and Find Full Text PDF

2025 Roadmap on 3D Nano-magnetism.

J Phys Condens Matter

November 2024

Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, Wien, 1040, AUSTRIA.

The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.

View Article and Find Full Text PDF

High-resolution X-ray imaging of noncrystalline objects is often achieved through the approach of scanning coherent diffractive imaging known as ptychography. The imaging resolution is usually limited by the scattering properties of the sample, where weak diffraction signals at the highest scattering angles compete with parasitic scattering. Here, we demonstrate that X-ray multilayer Laue lenses with a high numerical aperture (NA) can be used to create a strong reference beam that holographically boosts weak scattering from the sample over a large range of scattering angles, enabling high-resolution imaging that is tolerant of such background.

View Article and Find Full Text PDF

Internal Conversion Cascade in a Carbon Nanobelt: A Multiconfigurational Quantum Dynamical Study.

J Chem Theory Comput

September 2024

Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.

Carbon nanobelts feature intriguing photophysical properties, due to their high symmetry and structural rigidity. Here, we consider a (6,6) armchair carbon nanobelt, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!