Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modern laser range scanning campaigns produce extremely large point clouds, and reconstructing a triangulated surface thus requires both out-of-core techniques and significant computational power. We present a GPU-accelerated implementation of the moving least-squares (MLS) surface reconstruction technique. We believe this to be the first GPU-accelerated, out-of-core implementation of surface reconstruction that is suitable for laser range-scanned data. While several previous out-of-core approaches use a sweep-plane approach, we subdivide the space into cubic regions that are processed independently. This independence allows the algorithm to be parallelized using multiple GPUs, either in a single machine or a cluster. It also allows data sets with billions of point samples to be processed on a standard desktop PC. We show that our implementation is an order of magnitude faster than a CPU-based implementation when using a single GPU, and scales well to 8 GPUs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2013.118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!