The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54441a | DOI Listing |
Analyst
January 2025
Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
Protein -glycosylation, as one of the most crucial post-translational modifications, plays a significant role in various biological processes. The structural alterations of -glycans are closely associated with the onset and progression of numerous diseases. Therefore, the precise and specific identification of disease-related -glycans in complex biological samples is invaluable for understanding their involvement in physiological and pathological processes, as well as for discovering clinical diagnostic biomarkers.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as -substitution SAr reactions, have been extensively explored.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Functional Materials, FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 00, Czech Republic.
Here, we investigate the interactions between five representative gaseous analytes and two poly(ionic liquids) (PILs) based on the sulfopropyl acrylate polyanion in combination with the alkylphosphonium cations, P and P, and their nanocomposites with fullerenes (C, C) to reveal the potential of PILs as sensitive layers for gas sensors. The gaseous analytes were chosen based on their molecular size (all of them containing two carbon atoms) and variation of functional groups: alcohol (ethanol), nitrile (acetonitrile), aldehyde (acetaldehyde), halogenated alkane (bromoethane), and carboxylic acid (acetic acid). The six variations of PILs-PSPA (), PSPA + C ( + C), PSPA + C ( + C), and PSPA (), PSPA + C ( + C), PSPA + C ( + C)-were characterized by UV-vis and Raman spectroscopy, and their interactions with each gaseous analyte were studied using electrochemical impedance spectroscopy.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
Chitosan is generally considered to be a procoagulant effect, which may cause adverse phenomena such as blood clotting when used in small-diameter vascular grafts. However, it also shows good biocompatibility and anti-inflammatory properties, which can facilitate vascular reconstruction. Therefore, it is significant to transition the effect of chitosan from coagulation promotion to antiplatelet while still harnessing its bioactivity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
Chitin nanocrystals (ChNCs) are typically produced using a combination of strong acid hydrolysis and mechanical treatments. In this study, a mild, energy-efficient, and environmentally friendly method was developed to prepare a novel form of chitin nanocrystals called hairy chitin nanocrystals (HChNCs) without the need of any mechanical treatments. The HChNCs were made by sequential oxidations on partially deacetylated chitin, resulting in a unique morphology with chitin molecular chains protruding from central chitin nanorods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!