AI Article Synopsis

Article Abstract

Background: Aggressive periodontitis (AP) is a complex disease whose phenotype is determined by genetic and environmental influences on the affected individuals. About 45% of the adult population in India has periodontitis. In Tumkur district of Karnataka, India, consanguineous first cousin and uncle-niece marriages are common, with a high incidence of AP. These discrepancies in the expression of periodontal disease directed us to find genetic etiology with respect to the Tumkur population. The clinical and genetic aspects of AP from this area have been presented in this paper.

Materials And Methods: A total of nine families were ascertained at the Department of Periodontics, Sri Siddhartha Dental College and Hospital (Sri Siddhartha University), Tumkur. The clinical and radiographic data were gathered according to 1999 Consensus Classification of Periodontal Diseases. Peripheral blood samples were collected for total genomic DNA isolation using a Wizard TM Genomic Purification Kit (Promega, USA). The homozygosity mapping was carried out in a large consanguineous family to map a novel locus using autosomal markers from the CHLC/Weber Human Screening Set 10 (Research Genetics Inc., USA) at Indian Institute of Sciences, Bangalore.

Results: The pedigree analysis suggested that the disorder is segregating as an autosomal trait. The homozygosity mapping failed to identify a locus for generalized AP in the family.

Conclusion: The disorder may not be segregating as an autosomal recessive trait and we could have been misled by consanguinity in the family. It could be a multifactorial trait, or it could be still segregating as an autosomal recessive trait, but the region of homozygosity could be small and we failed to detect it using microsatellite markers. Therefore, SNP-marker-based analysis is warranted in future.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0970-9290.123422DOI Listing

Publication Analysis

Top Keywords

segregating autosomal
12
clinical genetic
8
genetic aspects
8
aggressive periodontitis
8
tumkur district
8
district karnataka
8
karnataka india
8
sri siddhartha
8
homozygosity mapping
8
disorder segregating
8

Similar Publications

A novel, dominant disease mechanism of distal renal tubular acidosis with specific variants in ATP6V1B1.

Nephrol Dial Transplant

January 2025

Paediatric Nephrology, UZ Leuven and Department of Cellular and Molecular Physiology, KUL, Leuven, Belgium.

Background And Hypothesis: ATP6V1B1 encodes a subunit of the vacuolar H+-ATPase and pathogenic variants are associated with autosomal recessive distal renal tubular acidosis (dRTA) with deafness. Heterozygous variants predicted to affect a specific amino acid, Arg394, have been recurrently reported in dRTA but their significance has been unclear. We hypothesised that these variants are associated with a dominant disease mechanism.

View Article and Find Full Text PDF

Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.

View Article and Find Full Text PDF

Objective: Oculoauriculovertebral spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular, and vertebral anomalies. We present genetic findings on a 3-generation family affected with macrostomia, preauricular tags and ptosis following an autosomal dominant pattern.

Design: We generated whole-genome sequencing data for the proband, affected father, and unaffected paternal grandmother followed by Sanger sequencing on 23 family members for the top candidate gene mutations.

View Article and Find Full Text PDF

Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.

View Article and Find Full Text PDF

Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia.

J Genet Genomics

January 2025

Department of Medical Genetics and Center for Rare Diseases, the Second Affiliated Hospital of Zhejiang University School of Medicine, and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Lead contact. Electronic address:

Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!