In this work, we present and evaluate a (111)-rotated eight-band k ⋅p Hamiltonian for the zinc-blende crystal lattice to investigate the electronic properties of site-controlled InGaAs/GaAs quantum dots grown along the [111] direction. We derive the rotated Hamiltonian including strain and piezoelectric potentials. In combination with our previously formulated (111)-oriented continuum elasticity model, we employ this approach to investigate the electronic properties of a realistic site-controlled (111)-grown InGaAs quantum dot. We combine these studies with an evaluation of single-band effective mass and eight-band k ⋅p models, to investigate the capabilities of these models for the description of electronic properties of (111)-grown zinc-blende quantum dots. Moreover, the influence of second-order piezoelectric contributions on the polarization potential in such systems is studied. The description of the electronic structure of nanostructures grown on (111)-oriented surfaces can now be achieved with significantly reduced computational costs in comparison to calculations performed using the conventional (001)-oriented models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/3/035303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!