A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. | LitMetric

Introduction: Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for estrogen-dependent growth. Alternatively, tamoxifen resistance may be due to selection of pre-existing resistant cells, or a combination of the two mechanisms.

Methods: To evaluate the contribution of these possible tamoxifen resistance mechanisms, we applied modified DNA methylation-specific digital karyotyping (MMSDK) and digital gene expression (DGE) in combination with massive parallel sequencing to analyze a well-established tamoxifen-resistant cell line model (TAM(R)), consisting of 4 resistant and one parental cell line. Another tamoxifen-resistant cell line model system (LCC1/LCC2) was used to validate the DNA methylation and gene expression results.

Results: Significant differences were observed in global gene expression and DNA methylation profiles between the parental tamoxifen-sensitive cell line and the 4 tamoxifen-resistant TAM(R) sublines. The 4 TAM(R) cell lines exhibited higher methylation levels as well as an inverse relationship between gene expression and DNA methylation in the promoter regions. A panel of genes, including NRIP1, HECA and FIS1, exhibited lower gene expression in resistant vs. parental cells and concurrent increased promoter CGI methylation in resistant vs. parental cell lines. A major part of the methylation, gene expression, and pathway alterations observed in the TAM(R) model were also present in the LCC1/LCC2 cell line model. More importantly, high expression of SOX2 and alterations of other SOX and E2F gene family members, as well as RB-related pocket protein genes in TAMR highlighted stem cell-associated pathways as being central in the resistant cells and imply that cancer-initiating cells/cancer stem-like cells may be involved in tamoxifen resistance in this model.

Conclusion: Our data highlight the likelihood that resistant cells emerge from cancer-initiating cells/cancer stem-like cells and imply that these cells may gain further advantage in growth via epigenetic mechanisms. Illuminating the expression and DNA methylation features of putative cancer-initiating cells/cancer stem cells may suggest novel strategies to overcome tamoxifen resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057522PMC
http://dx.doi.org/10.1186/bcr3588DOI Listing

Publication Analysis

Top Keywords

gene expression
28
dna methylation
24
tamoxifen resistance
20
expression dna
16
breast cancer
12
resistant cells
12
cell model
12
resistant parental
12
cancer-initiating cells/cancer
12
expression
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!