A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Untargeted metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-MS method. | LitMetric

Untargeted metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-MS method.

J Proteome Res

Analytisch-Biologisches Forschungslabor (ABF) GmbH , Goethestraße 20, D-80336 Munich, Germany.

Published: March 2014

A GC-TOF-MS method was developed and validated for a metabolic fingerprinting in saliva of smokers and nonsmokers. We validated the method by spiking 37 different metabolites and 6 internal standards to saliva between 0.1 μM and 2 mM. Intraday coefficients of variation (CVs) (accuracies) were on average, 11.9% (85.8%), 8.2% (88.9%), and 10.0% (106.7%) for the spiked levels 25, 50, and 200 μM, respectively (N = 5). Interday CVs (accuracies) were 12.4% (97%), 18.8% (95.5%), and 17.2% (105.9%) for the respective levels of 25, 50, and 200 μM (N = 5). The method was applied to saliva of smokers and nonsmokers, obtained from a 24 h diet-controlled clinical study, in order to identify biomarkers of endogenous origin, which could be linked to smoking related diseases. Automated peak picking, integration, and statistical analysis were conducted by the software tools MZmine, Metaboanalyst, and PSPP. We could identify 13 significantly altered metabolites in smokers (p < 0.05) by matching them against MS libraries and authentic standard compounds. Most of the identified metabolites, including tyramine, adenosine, and glucose-6-phosphate, could be linked to smoking-related perturbations and may be associated with established detrimental effects of smoking.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr401099rDOI Listing

Publication Analysis

Top Keywords

saliva smokers
12
smokers nonsmokers
12
nonsmokers validated
8
gc-tof-ms method
8
cvs accuracies
8
levels 200
8
200 μm
8
untargeted metabolomic
4
metabolomic profiling
4
saliva
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!