Photobiologic and synthetic versatility of hydrazones has not yet been established with (1)O2 as a route to commonly encountered nitrosamines. Thus, to determine whether the "parent" reaction of formalhydrazone and (1)O2 leads to facile C=N bond cleavage and resulting nitrosamine formation, we have carried out CCSD(T)//DFT calculations and analyzed the energetics of the oxidation pathways. A [2 + 2] pathway occurs via diradicals and formation of 3-amino-1,2,3-dioxazetidine in a 16 kcal/mol(-1) process. Reversible addition or physical quenching of (1)O2 occurs either on the formalhydrazone carbon for triplet diradicals at 2-3 kcal mol(-1), or on the nitrogen (N(3)) atom forming zwitterions at ~15 kcal/mol(-1), although the quenching channel by charge-transfer interaction was not computed. The computations also predict a facile conversion of formalhydrazone and (1)O2 to hydroperoxymethyl diazene in a low-barrier 'ene' process, but no 2-amino-oxaziridine-O-oxide (perepoxide-like) intermediate was found. A Benson-like analysis (group increment calculations) on the closed-shell species are in accord with the quantum chemical results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959238 | PMC |
http://dx.doi.org/10.1111/php.12199 | DOI Listing |
Photochem Photobiol
June 2015
Department of Chemistry, Graduate Center & The City University of New York (CUNY), Brooklyn College, Brooklyn, NY.
Photobiologic and synthetic versatility of hydrazones has not yet been established with (1)O2 as a route to commonly encountered nitrosamines. Thus, to determine whether the "parent" reaction of formalhydrazone and (1)O2 leads to facile C=N bond cleavage and resulting nitrosamine formation, we have carried out CCSD(T)//DFT calculations and analyzed the energetics of the oxidation pathways. A [2 + 2] pathway occurs via diradicals and formation of 3-amino-1,2,3-dioxazetidine in a 16 kcal/mol(-1) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!