A variational Bayes spatiotemporal model for electromagnetic brain mapping.

Biometrics

Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.

Published: March 2014

In this article, we present a new variational Bayes approach for solving the neuroelectromagnetic inverse problem arising in studies involving electroencephalography (EEG) and magnetoencephalography (MEG). This high-dimensional spatiotemporal estimation problem involves the recovery of time-varying neural activity at a large number of locations within the brain, from electromagnetic signals recorded at a relatively small number of external locations on or near the scalp. Framing this problem within the context of spatial variable selection for an underdetermined functional linear model, we propose a spatial mixture formulation where the profile of electrical activity within the brain is represented through location-specific spike-and-slab priors based on a spatial logistic specification. The prior specification accommodates spatial clustering in brain activation, while also allowing for the inclusion of auxiliary information derived from alternative imaging modalities, such as functional magnetic resonance imaging (fMRI). We develop a variational Bayes approach for computing estimates of neural source activity, and incorporate a nonparametric bootstrap for interval estimation. The proposed methodology is compared with several alternative approaches through simulation studies, and is applied to the analysis of a multimodal neuroimaging study examining the neural response to face perception using EEG, MEG, and fMRI.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.12126DOI Listing

Publication Analysis

Top Keywords

variational bayes
12
bayes approach
8
bayes spatiotemporal
4
spatiotemporal model
4
model electromagnetic
4
brain
4
electromagnetic brain
4
brain mapping
4
mapping article
4
article variational
4

Similar Publications

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Recent technological advancements have enabled the collection of intensive longitudinal data (ILD), consisting of repeated measurements from the same individual. The threshold autoregressive (TAR) model is often used to capture the dynamic outcome process in ILD, with autoregressive parameters varying based on outcome variable levels. For ILD from multiple individuals, multilevel TAR (ML-TAR) models have been proposed, with Bayesian approaches typically used for parameter estimation.

View Article and Find Full Text PDF

Understanding cell destiny requires unraveling the intricate mechanism of gene regulation, where transcription factors (TFs) play a pivotal role. However, the actual contribution of TFs, that is TF activity, is not only determined by TF expression, but also accessibility of corresponding chromatin regions. Therefore, we introduce BIOTIC, an advanced Bayesian model with a well-established gene regulation structure that harnesses the power of single-cell multi-omics data to model the gene expression process under the control of regulatory elements, thereby defining the regulatory activity of TFs with variational inference.

View Article and Find Full Text PDF

Federated learning meets Bayesian neural network: Robust and uncertainty-aware distributed variational inference.

Neural Netw

January 2025

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China. Electronic address:

Federated Learning (FL) is a popular framework for data privacy protection in distributed machine learning. However, current FL faces some several problems and challenges, including the limited amount of client data and data heterogeneity. These lead to models trained on clients prone to drifting and overfitting, such that we just obtain suboptimal performance of the aggregated model.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!