The hypoxia-inducible factor-1 (HIF-1α) pathway is associated with tumor growth, angiogenesis and metastasis in various carcinomas. Little is known regarding the role of the HIF-1α signaling pathway in cutaneous squamous cell carcinoma (SCC). We investigated the expression of HIF-1α, vascular endothelial growth factor (VEGF) and the HIF negative regulator, prolyl hydroxylase domain protein 2 (PHD2), in cutaneous SCC, Bowen's disease, seborrheic keratosis (SK) and normal skin by immunohistochemistry and in situ hybridization. Additionally, we explored the relationships between these factors and the clinical and histological characteristics of each disease. Our study indicated that the expression of HIF-1α and VEGF was significantly higher (P < 0.05) in cutaneous SCC than in Bowen's disease, SK or normal skin. In contrast, PHD2 showed significantly higher expression in normal skin compared with SK, Bowen's disease and cutaneous SCC (P < 0.05). Grade II-IV cutaneous SCC had higher expression levels of nuclear HIF-1α and cytoplasm VEGF protein but less nuclear PHD2 protein than grade Ι cutaneous SCC (P < 0.05). Overexpression of HIF-1α and VEGF, as well as the decreased expression of PHD2, may play important roles in the development of cutaneous SCC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1346-8138.12314DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
8
endothelial growth
8
growth factor
8
prolyl hydroxylase
8
hydroxylase domain
8
domain protein
8
cutaneous squamous
8
squamous cell
8
cell carcinoma
8
expression hif-1α
8

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Introduction: Systemic sclerosis is a complex disease characterized by the fibrosis and vasculopathy.

Aim: We aimed to assess scleroderma by examining involucrin, an early terminal differentiation marker of epidermal keratinocytes.

Material And Methods: Immunolocalization of involucrin was performed in healthy controls and patients with scleroderma lesions by using an immunofluorescence (IF) assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!