Regional cerebral metabolism and blood flow can be measured noninvasively with positron emission tomography (PET). 2-[(18) F]fluoro-2-deoxy-D-glucose (FDG) widely serves as a PET tracer in human patients with epilepsy to identify the seizure focus. The goal of this prospective study was to determine whether juvenile or adult dogs with focal-onset epilepsy exhibit abnormal cerebral glucose uptake interictally and whether glucose uptake changes with age. We used FDG-PET to examine six Lagotto Romagnolo dogs with juvenile epilepsy, two dogs with adult-onset epilepsy, and five control dogs of the same breed at different ages. Three researchers unaware of dog clinical status visually analyzed co-registered PET and magnetic resonance imaging (MRI) images. Results of the visual PET analyses were compared with electroencephalography (EEG) results. In semiquantitative analysis, relative standard uptake values (SUV) of regions of interest (ROI) drawn to different brain regions were compared between epileptic and control dogs. Visual analysis revealed areas of hypometabolism interictally in five out of six dogs with juvenile epilepsy in the occipital, temporal, and parietal cortex. Changes in EEG occurred in three of these dogs in the same areas where PET showed cortical hypometabolism. Visual analysis showed no abnormalities in cerebral glucose uptake in dogs with adult-onset epilepsy. Semiquantitative analysis detected no differences between epileptic and control dogs. This result emphasizes the importance of visual analysis in FDG-PET studies of epileptic dogs. A change in glucose uptake was also detected with age. Glucose uptake values increased between dog ages of 8 and 28 weeks and then remained constant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vru.12129 | DOI Listing |
Scientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.
Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.
Nat Metab
January 2025
CECAD Excellence Center, University of Cologne, Cologne, Germany.
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!