A mononucleating (HL(1)) and a dinucleating (HL(2)) "end-off" compartmental ligand have been designed and synthesized by controlled Mannich reaction using p-cresol and bis(2-methoxyethyl)amine, and their formation has been rationalized. Six complexes have been prepared on treating HL(1) and HL(2) with Zn(II)X2 (X = Cl(-), Br(-), I(-)) with the aim to investigate their hydrolytic activity on phosphoester bond cleavage. Interestingly, the mononucleating ligand was observed to yield dinuclear complexes, [Zn2(L(1))2X2] (1-3), while the potential dinucleating ligand generated mononuclear complexes, [Zn(HL(2))X2] (4-6). Four (1-4), out of six complexes studied, were characterized by single-crystal X-ray diffraction (XRD): the Zn ion exhibits trigonal bipyramidal and tetrahedral coordination spheres in the di- and mononuclear complex, respectively. The hydrolytic kinetics, followed spectrophotometrically with 4-nitrophenylphosphate (4-NPP) in buffered dimethylformamide (DMF) (97.5% DMF, v/v) because of solubility reasons, under excess substrate conditions (substrate:complex = 20:1), indicated that the complexes enormously accelerate the rate of phosphomonoester hydrolysis with first order rate constants (kcat) in the range 2-10 s(-1) at 25 °C. In each case kinetic data analyses have been run by Michaelis-Menten treatment. The efficacy in the order of conversion of substrate to product (p-nitrophenolate ion) follows the trend 1 > 2 > 3 > 4 > 5 > 6, and the ratio of kcat of an analogous dinuclear to mononuclear complex is ≃2. An electrospray ionization-mass spectrometry (ESI-MS) study has revealed the dissociation of the centrosymmetric dinuclear complex to two mononuclear species instead of a syn-cooperative catalysis. Density functional theory (DFT) calculations have been performed to rationalize our proposed mechanistic pathway for phosphatase activity. The comparative analysis concludes the following facts under experimental conditions: (1) the halide bound to the active site affects the overall rate in the order: Cl(-) > Br(-) > I(-) regardless of nuclearity; (2) dinuclear complexes prevail over the mononuclear ones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic4015493DOI Listing

Publication Analysis

Top Keywords

phosphatase activity
8
cl- br-
8
dinuclear complexes
8
mononuclear complex
8
complexes
7
mononuclear
5
influence coordination
4
coordination environment
4
environment zincii
4
zincii complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!