There is no consensus on the definition of a structural proximal thoracic curve (PTC) and the indications for fusion. As such, we assessed a single institute's experience in the management of large PTCs (>35 degrees) in patients with adolescent idiopathic scoliosis (AIS) who were either fused or not fused. A retrospective radiographic analyses of 30 consecutive AIS patients with double thoracic curves who underwent PSF with a minimum of 2 years' follow-up were included for review. The patients were divided into two groups: group 1 (n = 15 patients) with fusion extended up to T2 or T3 and group 2 (n = 15) with fusion limited to T5 or below. Shoulder balance was assessed according to clavicular angle, first-rib difference, and radiographic shoulder height difference (SHD). PTCs were defined based on a Cobb angle of >35, the presence of apical rotation, and a positive T1 tilt. The decision to fuse the PTC was based on curve magnitude only, with those between 35 and 45 degrees undergoing a selective fusion of the main thoracic curve (MTC), with both curves fused if the PTC was more than 45 degrees. In group 1, there were eight females and seven males. Their ages ranged between 12 and 33 years, with a mean of 16.2 ± 5.5 years. Postoperatively, the mean PTC correction was 45.6%, which statistically differed from preoperative status (p = 0.001). No statistical difference was noted in T1 tilt and the first-rib difference from preoperative to postoperative follow-up (p > 0.05). However, the clavicular angle and SHD were increased significantly at the immediate postoperative interval (p < 0.05) but demonstrated no significant changes between the initial and the last follow-up values (p > 0.05). Group 2 consisted of one male and 14 females. The mean age was 16.4 ± 4 years (range: 11 to 28 years). The mean spontaneous PTC correction was 28.3% and remained essentially unchanged at the end of the follow-up. The improvement in the curve from preoperative status was highly statistically significant (p = 0.001). All radiographic shoulder parameters exhibited a significant increase in the immediate postoperative period and at last follow-up, and shoulder balance improvement was not noted on follow-up. Although both groups were not statistically similar with regards to the preoperative PTC, AVR, apical vertebral translation, and shoulder parameters, no significant difference could be found in PTC or shoulder parameters between both groups at last follow-up (p > 0.05). Our study illustrates important observations that should be considered in defining the PTC for fusion consideration. Spontaneous correction of the PTC occurs in structural curves greater than 35 degrees and less than 45 degrees, and this correction is maintained over time. Despite that correction, radiographic shoulder parameters are expected to slightly increase. Nonfusion strategy may be appropriate for PTCs between 35 and 45 degrees. After fusion of both the MTC and the PTC, the radiographic shoulder parameters did not significantly differ. Preoperative radiographic shoulder parameters are not predictive of postoperative shoulder imbalance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864415 | PMC |
http://dx.doi.org/10.1055/s-0031-1296054 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.
Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.
View Article and Find Full Text PDFActa Ortop Bras
January 2025
Departamento de Ortopedia, FC Clínica de Traumatologia Esportiva, Salvador, BA, Brazil.
Objective: To evaluate the prevalence of shoulder pain, level of functional performance, and morphological involvement of the rotator cuff on ultrasound in morbidly obese patients.
Methods: The study included 54 morbidly obese patients receiving follow-up care in a bariatric surgery outpatient clinic, which were compared with a control group consisting of 49 participants. Presence of shoulder pain, shoulder functional performance, ultrasound of the rotator cuff and blood tests were the parameters evaluated.
Essential amino acid (EAA) supplementation, including conditionally essential amino acid (CEAA) and branched-chain amino acids (BCAA) supplementation, has been suggested as a mechanism to optimize patient outcomes by counteracting the atrophy associated with orthopedic procedures. We sought to investigate the effect of EAA supplementation in the perioperative period on patients undergoing orthopedic and spine surgery, specifically whether it is associated with (1) reductions in postoperative muscle atrophy and (2) improved postoperative function including range of motion, strength, and mobility. We conducted a systematic review of the literature.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Dalian University of Technology Affiliated Central Hospital, Dalian 116024, China.
Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.
Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.
Materials (Basel)
December 2024
Department of Mechanical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia.
This paper estimates friction stir welded joints' ultimate tensile strength (UTS) and hardness using six supervised machine learning models (viz., linear regression, support vector regression, decision tree regression, random forest regression, K-nearest neighbour, and artificial neural network). Tool traverse speed, tool rotational speed, pin diameter, shoulder diameter, tool offset, and tool tilt are the six input parameters in the 200 datasets for training and testing the models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!