A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immune evasion in acute myeloid leukemia: current concepts and future directions. | LitMetric

Immune evasion in acute myeloid leukemia: current concepts and future directions.

J Immunother Cancer

Department of Medicine, University of Chicago Comprehensive Cancer Center and Committee on Immunology, 5841 S. Maryland Ave, MC 2115, Chicago, IL 60637, USA ; University of Chicago Comprehensive Cancer Center and Committee on Immunology, Chicago, IL, USA.

Published: August 2013

Immune responses generated against malignant cells have the potential to inhibit tumor growth, or even eliminate transformed cells before a tumor forms. However, immune tolerance mechanisms that normally protect healthy tissues from autoimmune damage pose a formidable barrier to the development of effective anti-tumor immunity. Because malignant cells are derived from self-tissues, the majority of defined tumor antigens are either shared or aberrantly expressed self-proteins. Eliciting productive T cell responses against such proteins is challenging, as most high-affinity, self-reactive T cells are purged during thymic selection. Some T cells capable of tumor antigen recognition escape thymic deletion, but are functionally inhibited by peripheral tolerance mechanisms which limit their ability to attack a developing malignancy. Alternatively, some tumors express antigens derived from mutated self-proteins, viral proteins or self proteins expressed only during embryonic development. These antigens are recognized by the immune system as foreign and could be recognized by a relatively large number of peripheral T cells. Even in this scenario, tumors evade otherwise effective T cell responses by employing potent immunosuppressive mechanisms within their local environment. In the setting for solid malignancies, such as melanoma, a growing number of putative immune evasion mechanisms have been characterized. However, acute myeloid leukemia (AML) is a systemic disease, and the pathways it exploits to subvert the host immune response may be quite different than those of a solid tumor. Much remains unknown regarding the immune escape mechanisms promoted by AML, and whether efforts to thwart tolerance may influence the progression of this disease. Here, we review current concepts of immune evasion in AML, and speculate how potentially effective immunotherapeutic strategies might be developed to reverse immune tolerance in leukemia patients in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864190PMC
http://dx.doi.org/10.1186/2051-1426-1-13DOI Listing

Publication Analysis

Top Keywords

immune evasion
12
immune
9
acute myeloid
8
myeloid leukemia
8
current concepts
8
malignant cells
8
immune tolerance
8
tolerance mechanisms
8
cell responses
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!